Microstructural characteristics and mechanical properties of 3D printed Kevlar fibre reinforced Onyx composite

Author:

Vaithiyanathan Alagar1,Farhan Hameed1,Raja Dhanigaivel Elil1ORCID,Singh Sundar Prathap1ORCID,Sonar Tushar23ORCID

Affiliation:

1. Department of Mechanical Engineering , St Joseph’s Institute of Technology , Chennai , 600119, Tamil Nadu, India

2. Department of Welding Engineering , Institution of Engineering and Technology, South Ural State University (National Research University) , Chelyabinsk , 454080, Russia

3. Department of Scientific and Innovative Activities, Institution of Engineering and Technology , South Ural State University (National Research University) , 454080 , Chelyabinsk , Russia

Abstract

Abstract The main objective of this study is to develop the Kevlar fibre reinforced Onyx composite (KFRO) material by employing the 3D printing technology and examine the effect of Kevlar fibre reinforcement percentage on microstructural characteristics and mechanical properties of developed composite material. The methodology of continuous fibre reinforced composites (CFRC) was followed and the Kevlar fibre reinforcement % was varied as 10 %, 20 % and 30 % in the composite material fabrication. Results disclosed that the KFRO composite 3D printed using 30 % Kevlar fibre reinforcement in Onyx matrix yielded greater tensile strength of 124 MPa, flexural strength of 105 MPa, impact toughness of 2.4 J and shore hardness of 76 D. The mechanical properties of KFRO composite were significantly improved at 20 % of Kevlar fibre reinforcement compared to 10 % of Kevlar fibre reinforcement. Further increase in Kevlar fibre reinforcement up to 30 % showed slight enhancement in mechanical properties of KFRO composite when compared to 20 % of Kevlar fibre reinforcement. The overall strength improvement is a result of the increased reinforcement, precise alignment of fibres in the loading direction, and the uniform distribution of fibres within the onyx.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3