Author:
Pires J. Norberto,Azar Amin S.,Nogueira Filipe,Zhu Carlos Ye,Branco Ricardo,Tankova Trayana
Abstract
Purpose
Additive manufacturing (AM) is a rapidly evolving manufacturing process, which refers to a set of technologies that add materials layer-by-layer to create functional components. AM technologies have received an enormous attention from both academia and industry, and they are being successfully used in various applications, such as rapid prototyping, tooling, direct manufacturing and repair, among others. AM does not necessarily imply building parts, as it also refers to innovation in materials, system and part designs, novel combination of properties and interplay between systems and materials. The most exciting features of AM are related to the development of radically new systems and materials that can be used in advanced products with the aim of reducing costs, manufacturing difficulties, weight, waste and energy consumption. It is essential to develop an advanced production system that assists the user through the process, from the computer-aided design model to functional components. The challenges faced in the research and development and operational phase of producing those parts include requiring the capacity to simulate and observe the building process and, more importantly, being able to introduce the production changes in a real-time fashion. This paper aims to review the role of robotics in various AM technologies to underline its importance, followed by an introduction of a novel and intelligent system for directed energy deposition (DED) technology.
Design/methodology/approach
AM presents intrinsic advantages when compared to the conventional processes. Nevertheless, its industrial integration remains as a challenge due to equipment and process complexities. DED technologies are among the most sophisticated concepts that have the potential of transforming the current material processing practices.
Findings
The objective of this paper is identifying the fundamental features of an intelligent DED platform, capable of handling the science and operational aspects of the advanced AM applications. Consequently, we introduce and discuss a novel robotic AM system, designed for processing metals and alloys such as aluminium alloys, high-strength steels, stainless steels, titanium alloys, magnesium alloys, nickel-based superalloys and other metallic alloys for various applications. A few demonstrators are presented and briefly discussed, to present the usefulness of the introduced system and underlying concept. The main design objective of the presented intelligent robotic AM system is to implement a design-and-produce strategy. This means that the system should allow the user to focus on the knowledge-based tasks, e.g. the tasks of designing the part, material selection, simulating the deposition process and anticipating the metallurgical properties of the final part, as the rest would be handled automatically.
Research limitations/implications
This paper reviews a few AM technologies, where robotics is a central part of the process, such as vat photopolymerization, material jetting, binder jetting, material extrusion, powder bed fusion, DED and sheet lamination. This paper aims to influence the development of robot-based AM systems for industrial applications such as part production, automotive, medical, aerospace and defence sectors.
Originality/value
The presented intelligent system is an original development that is designed and built by the co-authors J. Norberto Pires, Amin S. Azar and Trayana Tankova.
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering
Reference74 articles.
1. Direct metal fabrication in rapid prototyping: a review;Journal of Manufacturing Processes,2019
2. An investigation on mechanical and microstructural properties of 316LSi parts fabricated by a robotized laser/wire direct metal deposition system;Additive Manufacturing,2018
3. Material handling and registration for an additive manufacturing-based hybrid system;Journal of Manufacturing Systems,2017
4. Additive manufacturing of Ti–6Al–4V parts through laser metal deposition (LMD): process, microstructure, and mechanical properties;Journal of Alloys and Compounds,2019
5. Additive manufacturing of multi-material structures;Materials Science and Engineering: R: Reports,2018
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献