Robot obstacle avoidance system using deep reinforcement learning

Author:

Zhu Xiaojun,Liang Yinghao,Sun Hanxu,Wang Xueqian,Ren Bin

Abstract

Purpose Most manufacturing plants choose the easy way of completely separating human operators from robots to prevent accidents, but as a result, it dramatically affects the overall quality and speed that is expected from human–robot collaboration. It is not an easy task to ensure human safety when he/she has entered a robot’s workspace, and the unstructured nature of those working environments makes it even harder. The purpose of this paper is to propose a real-time robot collision avoidance method to alleviate this problem. Design/methodology/approach In this paper, a model is trained to learn the direct control commands from the raw depth images through self-supervised reinforcement learning algorithm. To reduce the effect of sample inefficiency and safety during initial training, a virtual reality platform is used to simulate a natural working environment and generate obstacle avoidance data for training. To ensure a smooth transfer to a real robot, the automatic domain randomization technique is used to generate randomly distributed environmental parameters through the obstacle avoidance simulation of virtual robots in the virtual environment, contributing to better performance in the natural environment. Findings The method has been tested in both simulations with a real UR3 robot for several practical applications. The results of this paper indicate that the proposed approach can effectively make the robot safety-aware and learn how to divert its trajectory to avoid accidents with humans within the workspace. Research limitations/implications The method has been tested in both simulations with a real UR3 robot in several practical applications. The results indicate that the proposed approach can effectively make the robot be aware of safety and learn how to change its trajectory to avoid accidents with persons within the workspace. Originality/value This paper provides a novel collision avoidance framework that allows robots to work alongside human operators in unstructured and complex environments. The method uses end-to-end policy training to directly extract the optimal path from the visual inputs for the scene.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference25 articles.

1. Safe and automated assembly process using vision assisted robot manipulator;Procedia CIRP,2016

2. Reinforcement learning for pivoting task,2017

3. Dynamic collision avoidance system for a manipulator based on RGB-D data,2017

4. Moving obstacle avoidance for redundant manipulator via weighted least norm method,2015

5. A depth space approach to human-robot collision avoidance,2012

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3