The improvement of XD-MSM friction tester based on Labview

Author:

Wang Guimei,Li Xiaomei

Abstract

Purpose With the widespread use and development of automobile, much attention has been paid to its security issues. So to ensure the driving safety, the automobile must be equipped with good braking performance. In the process of braking, the friction from friction pair causes continuous wear and tear of the surface of brake lining and increases the gap between break pairs, until the lining is not being used (Belhocinea et al., 2014); thus, it is very important to detect the lining wear rate. Design/methodology/approach This paper designed the automobile brake friction test wear rate detection system based on Labview. Findings Through the detect data, we find that the automobile brake lining wear rate detection system has higher detect accuracy, in the process of detection, the brake lining without the defects such as cracks and bulges, which shall effect the normal use, the lining has no remarkable scratch to disk friction surface, can completed meet the requirements of users. Originality/value The automobile brake friction test wear rate detecting system adopts the components of USB-9211 DAQ, optoNCDT1700 non-contract high accuracy displacement sensor, in addition the Labview software to complete the functions such as lining wear rate real time detection, data multichannel real time acquisition, display, and storage record, etc., and uses LabSQL to import the detecting data to Microsoft Access database, which can satisfy the demands of various customers. Moreover, the wear rate real time detection can reflect the lining’s wear regulation of different manufacturers and different material and provide a reliable basis for selecting the appropriate lining material and predicting the lining’s lifetime.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference17 articles.

1. Analysis and design of a PWM chopper-on/off control via a second order filter;World Journal of Engineering,2014

2. Modeling of thermal contact problem of disc brake system with frictional heat generation;World Journal of Engineering,2014

3. A labview based data acquisition system for vibration monitoring and analysis,2002

4. Vehicle speed affects both pre-skid braking kinematics and average tire/roadway friction;Accident Analysis and Prevention,2004

5. The application of sensor in brake tester signal acquisition system;Wiener Electronic Technology,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3