An optimized travelling time estimation mechanism for minimizing handover failures and unnecessary handovers from cellular networks to WLANs

Author:

Mahmood Adnan,Zen Hushairi,Othman Al-Khalid

Abstract

Purpose – The paper aims to propose an optimized handover necessity estimation scheme for a mobile terminal (MT) traversing from a third-generation (3G) cellular network into the wireless local area network (WLAN) cell for reducing the number of handover failures and unnecessary handovers. Design/methodology/approach – The proposed optimized handover necessity estimation scheme comprises of two algorithms – a “travelling time prediction” reliant on consecutive received signal strength (RSS) measurements and MT’s velocity, and a “time threshold estimation” depending on the handover latency, WLAN’s cell radius, tolerable handover failure probability and the tolerable unnecessary handover probability. Findings – Our performance analysis reveals that the suggested mechanism effectively minimizes the number of handover failures and unnecessary handovers by 60 per cent as compared to the already proposed schemes in the literature. Originality/value – The convergence of Internet and wireless mobile communication accompanied by a massive increase in the number of cellular subscribers has led mobility management to emerge as a significant and challenging domain for wireless mobile communication over the Internet. Mobility management enables serving networks to locate roaming terminals for the call delivery (location management) and ensures a seamless connection as MT enters into the new service area (handover management). In this manuscript, an optimized handover necessity estimation scheme has been envisaged for reducing the probability of handover failures and unnecessary handovers from 3G cellular networks to WLANs to provide optimal network utilization along with an enhanced user satisfaction. Performance analysis reveals that the suggested scheme yields enhanced results as compared to the schemes already proposed in the literature.

Publisher

Emerald

Subject

General Computer Science,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3