Extending and understanding: an application of machine learning to the World Bank's logistics performance index

Author:

Shepherd BenORCID,Sriklay TanapornORCID

Abstract

PurposeThe authors extend the World Bank's Logistics Performance Index (LPI) for 30 additional countries and 13 additional years. The authors develop an inexpensive method for extending survey data when frequent, universal surveys are unavailable. The authors identify groups of country characteristics that influence LPI scores.Design/methodology/approachUsing data from the World Development Indicators—the broadest global dataset of country socioeconomic features—the authors test machine learning algorithms for their ability to predict the LPI. The authors examine importance scores to identify factors that influence LPI scores.FindingsThe best performing algorithm produces predictions on unseen data that account for nearly 90% of observed variation, and are accurate to within 6%. It performs twice as well as an OLS model with per capita income as the only predictor. Explanatory factors are business environment, economic structure, finance, environment, human development, and institutional quality.Practical implicationsMachine learning offers a simple, inexpensive way of extending the coverage of survey data. This dataset provides a richer picture of logistics performance around the world. The factors the authors identify as predicting higher LPI scores can help policymakers and practitioners target interventions.Originality/valueThis paper is one of the first applications of machine learning to extend coverage of an index based on an international survey. The authors use the new data to provide the most wide-ranging analysis of logistics performance across countries and over time. The output is an important resource for policymakers tracking performance, and researchers particularly in smaller and lower income countries. The authors also examine a wider range of explanatory factors for LPI scores than previous work.

Publisher

Emerald

Subject

Management of Technology and Innovation,Transportation

Reference35 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3