Exploring temporal dependencies among country-level logistics performance indicators

Author:

Qazi AbroonORCID,Al-Mhdawi M.K.S.,Simsekler Mecit Can Emre

Abstract

PurposeThe Logistics Performance Index (LPI), published by the World Bank, is a key measure of national-level logistics performance. It comprises six indicators: customs, infrastructure, international shipments, service quality, timeliness, and tracking and tracing. The objective of this study is to explore temporal dependencies among the six LPI indicators while operationalizing the World Bank’s LPI framework in terms of mapping the input indicators (customs, infrastructure, and service quality) to the outcome indicators (international shipments representing cost, timeliness, and tracking and tracing representing reliability).Design/methodology/approachA Bayesian Belief Network (BBN)-based methodology was adopted to effectively map temporal dependencies among variables in a probabilistic network setting. Using forward and backward propagation features of BBN inferencing, critical variables were also identified. A BBN model was developed using the World Bank’s LPI datasets for 2010, 2012, 2014, 2016, 2018, and 2023, covering the six LPI indicators for 118 countries.FindingsThe prediction accuracy of the model is 88.1%. Strong dependencies are found across the six LPI indicators over time. The forward propagation analysis of the model reveals that “logistics competence and quality” is the most critical input indicator that can influence all three outcome indicators over time. The backward propagation analysis indicates that “customs” is the most critical indicator for improving the performance on the “international shipments” indicator, whereas “logistics competence and quality” can significantly improve the performance on the “timeliness” and “tracking and tracing” indicators. The sensitivity analysis of the model reveals that “logistics competence and quality” and “infrastructure” are the key indicators that can influence the results across the three outcome indicators. These findings provide useful insights to researchers regarding the importance of exploring the temporal modeling of dependencies among the LPI indicators. Moreover, policymakers can use these findings to help their countries target specific input indicators to improve country-level logistics performance.Originality/valueThis paper contributes to the literature on logistics management by exploring the temporal dependencies among the six LPI indicators for 118 countries over the last 14 years. Moreover, this paper proposes and operationalizes a data-driven BBN modeling approach in this unique context.

Publisher

Emerald

Reference57 articles.

1. Bayesian network modelling for the wind energy industry: an overview;Reliability Engineering and System Safety,2020

2. The propellants of the Logistics Performance Index: an empirical panel investigation of the European region;International Journal of Logistics Research and Applications,2021

3. Lifecycle risk assessment of a technological system using dynamic Bayesian networks;Quality and Reliability Engineering International,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3