Modeling of moisture sorption isotherm and evaluation of net isosteric heat for spray-dried fortified coconut (Cocos nucifera L.) powder

Author:

Lucas Aguirre Juan CarlosORCID,Giraldo Giraldo German Antonio,Cortés Rodríguez Misael

Abstract

PurposeIn order to understand interactions aw vs equilibrium moisture content (EMC) in fortified coconut powder, moisture sorption isotherms were constructed under different storage conditions in order to predict the changes in their physical, chemical and microbiological properties that occur during storage and processing, which are unique to each food.Design/methodology/approachFor which the moisture sorption isotherms were determined at three different temperatures (15, 25 and 35 °C), in a range of water activity from 0.1 to 0.90. Nine models, namely, the GAB, BET, Oswin, Smith, Halsey, Henderson, Chung and Pfost, Peleg and Caurie equations, were fitted to the sorption data. Various statistical tests were adopted as criteria to evaluate the fit performance of the models.FindingsOf the models tested, the Peleg model gave the best fit to experimental data (R2 = 0.997; RMSE = 0.276), across the full range of water activities and at different temperatures. Humidity of the monolayer (mo) was found between 2.54 and 2.34%, a fundamental parameter to define the storage and control conditions, given that it is considered the value at which the product is more stable. The net sorption isosteric heat (Qst) increased to maximum and then diminished with increased moisture content (Xw); maximum values were obtained in the Xw interval between 0.48 and 2.87% (db), being between 35.72 and 99.26 kJ/mol, where the maximum value indicates coverage of the strongest bond sites and higher adsorbate-adsorbent interaction.Originality/valueThese results provide reliable experimental data on water absorption isotherms of the CP + FAC important to determine optimal processing, storing and packaging conditions.

Publisher

Emerald

Subject

Food Science,Business, Management and Accounting (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3