A new hybrid particle swarm optimization and parallel variable neighborhood search algorithm for flexible job shop scheduling with assembly process

Author:

Fattahi Parviz,Bagheri Rad Naeeme,Daneshamooz Fatemeh,Ahmadi Samad

Abstract

Purpose The purpose of this paper is to present a mathematical model and a new hybrid algorithm for flexible job shop scheduling problem with assembly operations. In this problem, each product is produced by assembling a set of several different parts. At first, the parts are processed in a flexible job shop system, and then at the second stage, the parts are assembled and products are produced. Design/methodology/approach As the problem is non-deterministic polynomial-time-hard, a new hybrid particle swarm optimization and parallel variable neighborhood search (HPSOPVNS) algorithm is proposed. In this hybrid algorithm, particle swarm optimization (PSO) algorithm is used for global exploration of search space and parallel variable neighborhood search (PVNS) algorithm for local search at vicinity of solutions obtained in each iteration. For parameter tuning of the metaheuristic algorithms, Taguchi approach is used. Also, a statistical test is proposed to compare the ability of metaheuristics at finding the best solution in the medium and large sizes. Findings Numerical experiments are used to evaluate and validate the performance and effectiveness of HPSOPVNS algorithm with hybrid particle swarm optimization with a variable neighborhood search (HPSOVNS) algorithm, PSO algorithm and hybrid genetic algorithm and Tabu search (HGATS). The computational results show that the HPSOPVNS algorithm achieves better performance than competing algorithms. Practical implications Scheduling of manufacturing parts and planning of assembly operations are two steps in production systems that have been studied independently. However, with regard to many manufacturing industries having assembly lines after manufacturing stage, it is necessary to deal with a combination of these problems that is considered in this paper. Originality/value This paper proposed a mathematical model and a new hybrid algorithm for flexible job shop scheduling problem with assembly operations.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Reference63 articles.

1. Solving assembly sequence planning using angle modulated simulated Kalman filter,2018

2. A PSO and a Tabu search heuristics for the assembly scheduling problem of the two-stage distributed database application;Computers & Operations Research,2006

3. The two-stage assembly scheduling problem to minimize total completion time with setup times;Computers & Operations Research,2009

4. The two stage assembly flow shop scheduling problem to minimize total tardiness;Journal of Intelligent Manufacturing,2015

5. Minimizing the number of tardy jobs on a two-stage assembly flow shop;Journal of Industrial and Production Engineering,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3