Design and manufacture of TNT explosives detector sensors based on GFET

Author:

Masoumi Saeid,Hajghassem Hassan,Erfanian Alireza,Molaei Rad Ahmad

Abstract

Purpose Smart sensors based on graphene field effect transistor (GFET) and biological receptors are regarded as a promising nanomaterial that could be the basis for future generation of low-power, faster, selective real-time monitoring of target analytes and smaller electronics. So, the purpose of this paper is to provide details of sensors based on selective nanocoatings by combining trinitrotoluene (TNT) receptors (Trp-His-Trp) bound to conjugated polydiacetylene polymers on a graphene channel in GFET for detecting explosives TNT. Design/methodology/approach Following an introduction, this paper describes the way of manufacturing of the GFET sensor by using investigation methods for transferring graphene sheet from Cu foil to target substrates, which is functionalized by the TNT peptide receptors, to offer a system which has the capability of answering the presence of related target molecules (TNT). Finally, brief conclusions are drawn. Findings In a word, shortly after graphene discovery, it has been explored with a variety of methods gradually. Because of its exceptional electrical properties (e.g. extremely high carrier mobility and capacity), electrochemical properties such as high electron transfer rate and structural properties, graphene has already showed great potential and success in chemical and biological sensing fields. Therefore, the authors used a biological receptor with a field effect transistor (FET) based on graphene to fabricate sensor for achieving high sensitivity and selectivity that can detect explosive substances such as TNT. The transport property changed compared to that of the FET made by intrinsic graphene, that is, the Dirac point position moved from positive Vg to negative Vg, indicating the transition of graphene from p-type to n-type after annealing in TNT, and the results show the bipolar property change of GFET with the TNT concentration and the possibility to develop a robust, easy-to-use and low-cost TNT detection method for performing a sensitive, reliable and semi-quantitative detection in a wide detection range. Originality/value In this timeframe of history, TNT is a common explosive used in both military and industrial settings. Its convenient handling properties and explosive strength make it a common choice in military operations and bioterrorism. TNT and other conventional explosives are the mainstays of terrorist bombs and the anti-personnel mines that kill or injure more than 15,000 people annually in war-torn countries. In large, open-air environments, such as airports, train stations and minefields, concentrations of these explosives can be vanishingly small – a few parts of TNT, for instance, per trillion parts of air. That can make it impossible for conventional bomb and mine detectors to detect the explosives and save lives. So, in this paper, the authors report a potential solution with design and manufacture of a GFET sensor based on a biological receptor for real-time detection of TNT explosives specifically.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference29 articles.

1. Fluorogenic polydiacetylene supramolecules: immobilization, micropatterning, and application to label-free chemosensors;Accounts of Chemical Research,2008

2. TNT detection using multiplexed liquid array displacement immunoassays;Analytical Chemistry,2006

3. Polymerized vesicles containing molecular recognition sites;Langmuir,2005

4. Ultrasensitive label-free detection of pna–dna hybridization by reduced graphene oxide field-effect transistor biosensor;ACS Nano,2014

5. Polydiacetylene films: a review of recent investigations into chromogenic transitions and nanomechanical properties;Journal of Physics: Condensed Matter,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3