Design of the trinitrotoluene biosensor using polydiacetylene conjugated with peptide receptors coated on GR-FETs with colorimetric response

Author:

Masoumi Saeid,Hajghassem Hassan

Abstract

Purpose Smart biosensors that can perform sensitive and selective monitoring of target analytes are tremendously valuable for trinitrotoluene (TNT) explosive detection. In this research, the pre-developed sensor was integrated with biological receptors in which they enhanced the sensitivity of the sensor. This is due to conjugated polydiacetylene onto a peptide-based molecular recognition element (Trp-His-Trp) for TNT molecules in graphene field-effect transistors (GR-FETs) as biosensor that is capable of responding to the presence of a TNT target with a colorimetric response. The authors confirmed the efficacy of the receptor while being attached to polydiacetylene (PDA) by observing the binding ability between the Trp-His-Trp and TNT to alter the electronic band structure of the PDA conjugated backbones. The purpose of this paper is to demonstrate a modular system capable of transducing small-molecule TNT binding into a detectable signal. The details of the real-time and selective TNT biosensor have been reported. Design/methodology/approach Following an introduction, this paper describes the way of fabrication GR-FETs with conventional photolithography techniques and the other processes, which is functionalized by the TNT peptide receptors. The authors first determined the essential TNT recognition elements from UV-visible spectrophotometry spectroscopy for PDA sensor unit fabrication. In particular, the blue percentage and the chromic response were used to characterize the polymerization parameter of the conjugated p backbone. A continuous-flow trace vapor source of nitroaromatics (two, four, six-TNT) was designed and evaluated in terms of temperature dependence. The TNT concentration was measured by liquid/gas extraction in acetonitrile using bubbling sequence. The sensor test is performed using a four-point probe and semiconductor analyzer. Finally, brief conclusions are drawn. Findings Because of their unique optical and stimuli-response properties, the polydiacetylene and peptide-based platforms have been explored as an alternative to complex mechanical and electrical sensing systems. Therefore, the authors have used GR-FETs with biological receptor-PDAs as a biosensor for achieving high sensitivity and selectivity that can detect explosive substances such as TNT. The transport property changed compared to that of the field-effect transistors made by intrinsic graphene, that is, the Dirac point position moved from positive Vg to negative Vg, indicating the transition of graphene from p-type to n-type after annealing in TNT, and when the device was tested from RT, the response of the device was found to increase linearly with increasing concentrations. Average shifting rate of the Dirac peak was obtained as 0.1-0.3 V/ppm. The resulting sensors exhibited at the limit ppm sensitivity toward TNT in real-time, with excellent selectivity over various similar aromatic compounds. The biological receptor coating may be useful for the development of sensitive and selective micro and nanoelectronic sensor devices for various other target analytes. Originality/value The detection of illegally transported explosives has become important as the global rise in terrorism subsequent to the events of September 11, 2001, and is at the forefront of current analytical problems. It is essential that a detection method has the selectivity to distinguish among compounds in a mixture of explosives. So, the authors are reporting a potential solution with the designing and manufacturing of electrochemical biosensor using polydiacetylene conjugated with peptide receptors coated on GR-FETs with the colorimetric response for real-time detection of TNT explosives specifically.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference24 articles.

1. TNT detection using multiplexed liquid array displacement immunoassays;Analytical Chemistry,2006

2. Graphene oxide/conducting polymer composite hydrogels;Journal of Materials Chemistry,2011

3. Polydiacetylene films: a review of recent investigations into chromogenic transitions and nanomechanical properties;Journal of Physics: condensed Matter,2004

4. Polymer-oligopeptide composite coating for selective detection of explosives in water;Analytical Chemistry,2009

5. Intrinsic response of graphene vapor sensors;Nano Letters,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3