Abstract
PurposeThree-parameter interval grey numbers (TPIGNs) have been extensively studied as an extended form of interval numbers. However, most existing TPIGN multi-attribute decision-making methods only consider the similarity of positions, ignore the similarity of developmental directions and focus primarily on static evaluation. To address these limitations, in this study, the authors propose a dynamic technique for order preference by similarity to an ideal solution (TOPSIS) based on modified Jaccard similarity and angle similarity for TPIGNs.Design/methodology/approachFirst, the authors extend Jaccard similarity to a TPIGN environment to represent positional similarity. A simple example is provided to illustrate the limitations of the traditional Jaccard similarity. Then, the authors introduce an angle similarity measure to represent developmental directional similarity. Finally, a dynamic TOPSIS model is constructed by incorporating time-series data into conventional two-dimensional static data. Stage weights are obtained by an objective function designed to maximize the amount and minimize the fluctuation of decision information. A quadratic weighting method is adopted to derive the overall evaluation value of alternatives.FindingsTo evaluate the effectiveness of the proposed method, this study takes the pre-assessment of ice disaster and the selection of cooperative enterprises as examples. The authors then provide the results of comparative and sensitivity analyses, which demonstrate the effectiveness and flexibility of the proposed method.Originality/valueThe proposed TOPSIS method in a TPIGN environment can take a more holistic and dynamic perspective for decision-making, which helps mitigate the limitations of single-perspective or static evaluations.
Subject
Applied Mathematics,General Computer Science,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献