A novel design layout of three disjoint paths multistage interconnection network & its reliability analysis

Author:

Sharma Vipin,Ansari Abdul Q.,Mishra Rajesh

Abstract

Purpose The purpose of this paper is to design a efficient layout of Multistage interconnection network which has cost effective solution with high reliability and fault-tolerence capability. For parallel computation, various multistage interconnection networks (MINs) have been discussed hitherto in the literature, however, these networks always required further improvement in reliability and fault-tolerance capability. The fault-tolerance capability of the network can be achieved by increasing the number of disjoint paths as a result the reliability of the interconnection networks is also improved. Design/methodology/approach This proposed design is a modification of gamma interconnection network (GIN) and three disjoint path gamma interconnection network (3-DGIN). It has a total seven number of paths for all tag values which is uniform out of these seven paths, three paths are disjoint paths which increase the fault tolerance capability by two faults. Due to the presence of more paths than the GIN and 3-DGIN, this proposed design is more reliable. Findings In this study, a new design layout of a MIN has been proposed which provides three disjoint paths and uniformity in terms of an equal number of paths for all source-destination (S-D) pairs. The new layout contains fewer nodes as compared to GIN and 3-DGIN. This design provides a symmetrical structure, low cost, better terminal reliability and provides an equal number of paths for all tag values (|S-D|) when compared with existing MINs of this class. Originality/value A new design layout of MINs has been purposed and its two terminal reliability is calculated with the help of the reliability block diagram technique.

Publisher

Emerald

Subject

General Computer Science,Theoretical Computer Science

Reference26 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3