Reliable Gamma-Interconnection Network for Data Analysis in Sensor Networks: Design and Performance Evaluation

Author:

Gupta ShilpaORCID

Abstract

In today’s era of high speed 5G internet all electronic sensor networks are connected through IoT. Bank transactions are digitized, people can access any data through their mobile phones, organizations and companies handle their projects through online meetings etc. Military and medical surveillance, navy navigation, weapon controlling, weather forecasting etc. involve big data analysis collected from sensors, that too at a very high speed with reliable results. This requires large number of parallel processors connected with huge Bank of memory modules to store big data. Reliable interconnection network is needed to connect these large number of parallel processors and memory modules efficiently hence Multistage Interconnection Networks (MINs) come into play, as they provide highly reliable communication for big data transfer between processors and memory modules whenever required. In this manuscript a new network named Reliable Gamma-interconnection Network (RGN) is introduced which possesses multiple paths between processors and memory modules with two totally disjoint path availability. It provides high reliability and minimum path distance between source node to destination node than other gamma networks known, with the minimum hardware complexity. Reliability estimation and evaluation of RGN has been presented in this paper and comparison of results achieved with other gamma networks has been done for validation purpose.

Publisher

The Electrochemical Society

Reference46 articles.

1. Study of multistage SIMD interconnection networks;Siegel,1978

2. A survey of interconnection networks;Feng;Computer,1981

3. (1981) Processor-memory interconnections for multiprocessors,’ IEEE Trans;Patel;Cornput., C,1981

4. The gamma network: a multiprocessor interconnection network with redundant paths;Parker;ACM SIGARCH Computer Architecture News,1982

5. The gamma network;Parker;Comput IEEE Trans.,1984

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3