Lead-free solder wettability of oxidized-aluminum enhanced by Ar-H2 plasmas for flip-chip bumping

Author:

Lin Yung-Sen,Lin Shiau-Min,Li Jian-Yi,Liao Min-Chih

Abstract

Purpose An investigation has been performed on the improved solder wettability of oxidized aluminum (Al) with lead-free solder (96.5Sn-3.5Ag) using Ar-H2 plasmas. The lead-free solder wettability was raised from 62.2 per cent wetting for Al oxidized in air at 250 C for 4 h to 98.4 per cent wetting of oxidized Al modified by Ar-H2 plasmas at a certain H2 flow rate. This study aims to gain insight on the surface characteristics of Al affecting the solder wettability with a liquid lead-free solder. Design/methodology/approach Ar-H2 plasmas at certain H2 flow rates are intended to reduce Al oxides on the surfaces of oxidized Al substrates both by physical bombardments via Ar plasmas and chemical reductions with H2 plasmas, while Al substrates are exposed in Ar-H2 plasmas to improve the solder wettability with a liquid lead-free solder. Findings Surface characteristics of oxidized Al substrates have been identified to play key roles for enhanced lead-free solder wettability using Ar-H2 plasmas. A decrease in polar surface free energy and an increase in dispersive surface free energy on the surfaces of oxidized Al substrates are exploited to advance the lead-free solder wettability. Decreased composition ratios of O to Al, detected by X-ray photoelectron spectroscopy (XPS) for oxidized Al substrates, are crucial for improved lead-free solder wettability. Originality/value XPS is typically used to analyze the surface compositions of Al oxides. To provide a rapid and non-expansive method to identify the surfaces of Al substrates prior to soldering to assure lead-free solder wettability, this study proposes a measurable skill, a so-called sessile drop test method, to investigate surface free energies such as total, polar and dispersive surface free energy on the surfaces of Al substrates, to illuminate how the lead-free solder wettability of oxidized Al is improved by Ar-H2 plasmas.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Oxygen‐Free Production—From Vision to Application;Advanced Engineering Materials;2023-04-14

2. Optimization on Load Compensation of Generators Excitation Systems Considering Voltage Stability Margin;2019 IEEE 3rd International Electrical and Energy Conference (CIEEC);2019-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3