Numerical evaluation of separation efficiency in the diverging T-junction for slug flow

Author:

Ejaz Faheem,Pao William,Ali Hafiz Muhammad

Abstract

Purpose Offshore industries encounter severe production downtime due to high liquid carryovers in the T-junction. The diameter ratio and flow regime can significantly affect the excess liquid carryovers. Unfortunately, regular and reduce T-junctions have low separation efficiencies. Ansys as a commercial computational fluid dynamics (CFD) software was used to model and numerically inspect a novel diverging T-junction design. The purpose of diverging T-junction is to merge the specific characteristics of regular and reduced T-junctions, ultimately increasing separation efficiency. The purpose of this study is to numerically compute the separation efficiency for five distinct diverging T-junctions for eight different velocity ratios. The results were compared to regular and converging T-junctions. Design/methodology/approach Air-water slug flow was simulated with the help of the volume of the fluid model, coupled with the K-epsilon turbulence model to track liquid-gas interfaces. Findings The results of this study indicated that T-junctions with upstream and downstream diameter ratio combinations of 0.8–1 and 0.5–1 achieved separation efficiency of 96% and 94.5%, respectively. These two diverging T-junctions had significantly higher separation efficiencies when compared to regular and converging T-junctions. Results also revealed that over-reduction of upstream and downstream diameter ratios below 0.5 and 1, respectively, lead to declination in separation efficiency. Research limitations/implications The present study is constrained for air and water as working fluids. Nevertheless, the results apply to other applications as well. Practical implications The proposed T-junction is intended to reduce excessive liquid carryovers and frequent plant shutdowns. Thus, lowering operational costs and enhancing separation efficiency. Social implications Higher separation efficiency achieved by using diverging T-junction enabled reduced production downtimes and resulted in lower maintenance costs. Originality/value A novel T-junction design was proposed in this study with a separation efficiency of higher than 90%. High separation efficiency eliminates loss of time during shutdowns and lowers maintenance costs. Furthermore, limitations of this study were also addressed as the lower upstream and downstream diameter ratio does not always enhance separation efficiency.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference21 articles.

1. CFD numerical simulation of standalone sand screen erosion due to gas-sand flow;Journal of Natural Gas Science and Engineering,2021

2. ANSYS user guide;ANSYS,2018

3. Gas-liquid two-phase flow division at a micro-T-junction;Chemical Engineering Science,2010

4. Phase separation using a simple T-junction,2000

5. Numerical simulation of two-phase flow regime in horizontal pipeline and its validation;International Journal of Numerical Methods for Heat and Fluid Flow,2018

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3