Author:
Ban Sam,Pao William,Nasif Mohammad Shakir
Abstract
Purpose
The purpose of this paper is to investigate oil-gas slug formation in horizontal straight pipe and its associated pressure gradient, slug liquid holdup and slug frequency.
Design/methodology/approach
The abrupt change in gas/liquid velocities, which causes transition of flow patterns, was analyzed using incompressible volume of fluid method to capture the dynamic gas-liquid interface. The validity of present model and its methodology was validated using Baker’s flow regime chart for 3.15 inches diameter horizontal pipe and with existing experimental data to ensure its correctness.
Findings
The present paper proposes simplified correlations for liquid holdup and slug frequency by comparison with numerous existing models. The paper also identified correlations that can be used in operational oil and gas industry and several outlier models that may not be applicable.
Research limitations/implications
The correlation may be limited to the range of material properties used in this paper.
Practical implications
Numerically derived liquid holdup and holdup frequency agreed reasonably with the experimentally derived correlations.
Social implications
The models could be used to design pipeline and piping systems for oil and gas production.
Originality/value
The paper simulated all the seven flow regimes with superior results compared to existing methodology. New correlations derived numerically are compared to published experimental correlations to understand the difference between models.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Reference51 articles.
1. Investigation and prediction of slug frequency in gas/liquid horizontal pipe flow;Journal of Petroleum Science and Engineering,2009
2. Prediction of slug length distribution along a hilly terrain pipeline using slug tracking model;Journal of Energy Resources Technology,2004
3. Simultaneous flow of oil and gas;Oil and Gas Journal,1954
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献