Prediction of mechanical properties and optimization of process parameters in friction-stir-welded dissimilar aluminium alloys

Author:

T. Senthilnathan,B. Sujay Aadithya,K. Balachandar

Abstract

Purpose This study aims to predict the mechanical properties such as equivalent tensile strength and micro-hardness of friction-stir-welded dissimilar aluminium alloy plates AA 6063-O and AA 2014-T6, using artificial neural network (ANN). Design/methodology/approach The ANN model used for the experiment was developed through back propagation algorithm. The input parameter of the model consisted of tool rotational speed and weld-traverse speed whereas the output of the model consisted of mechanical properties (tensile strength and hardness) of the joint formed by friction-stir welding (FSW) process. The ANN was trained for 60% of the experimental data. In addition, the impact of the process parameters (tool rotational speed and weld-traverse speed) on the mechanical properties of the joint was determined by Taguchi Grey relational analysis. Findings Subsequently, testing and validation of the ANN were done using experimental data, which were not used for training the network. From the experiment, it was inferred that the outcomes of the ANN are in good agreement with the experimental data. The result of the analyses showed that the tool rotational speed has more impact than the weld-traverse speed. Originality/value The developed neural network can be used to predict the mechanical properties of the weld. Results indicate that the network prediction is similar to the experiment results. Overall regression value computed for training, validation and testing is greater than 0.9900 for both tensile strength and microhardness. In addition, the percentage error between experimental and predicted values was found to be minimal for the mechanical properties of the weldments. Therefore, it can be concluded that ANN is a potential tool for predicting the mechanical properties of the weld formed by FSW process. Similarly, the results of Taguchi Grey relational analysis can be used to optimize the process parameters of the weld process and it can be applied extensively to ascertain the most prominent factor. The results of which indicates that rotational speed of 1,270 rpm and traverse speed of 30 mm/min are to be the optimized process parameters. The result also shows that tool rotational speed has more impact on the mechanical properties of the weld than that of traverse speed.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference28 articles.

1. Influence of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA 6061 aluminium alloy;Materials & Design,2007

2. CDRX modeling in friction stir welding of aluminium alloys: a neural network based approach;Journal of Engineering Manufacturing- B,2007

3. Using a neural network for predicting the average grain size in friction stir welding processes;Computers & Structures,2009

4. Prediction of tensile strength in friction stir welded aluminium alloy using artificial neural network;Procedia Technology,2014

5. An experimental investigation on friction stir welding of dissimilar aluminium alloys - AA2014-T6 and AA6063-O,2014

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3