The performance comparison of machine learning methods for solar PV power prediction

Author:

Demir Funda

Abstract

Purpose The energy generation process through photovoltaic (PV) panels is contingent upon uncontrollable variables such as wind patterns, cloud cover, temperatures, solar irradiance intensity and duration of exposure. Fluctuations in these variables can lead to interruptions in power generation and losses in output. This study aims to establish a measurement setup that enables monitoring, tracking and prediction of the generated energy in a PV energy system to ensure overall system security and stability. Toward this goal, data pertaining to the PV energy system is measured and recorded in real-time independently of location. Subsequently, the recorded data is used for power prediction. Design/methodology/approach Data obtained from the experimental setup include voltage and current values of the PV panel, battery and load; temperature readings of the solar panel surface, environment and the battery; and measurements of humidity, pressure and radiation values in the panel’s environment. These data were monitored and recorded in real-time through a computer interface and mobile interface enabling remote access. For prediction purposes, machine learning methods, including the gradient boosting regressor (GBR), support vector machine (SVM) and k-nearest neighbors (k-NN) algorithms, have been selected. The resulting outputs have been interpreted through graphical representations. For the numerical interpretation of the obtained predictive data, performance measurement criteria such as mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE) and R-squared (R2) have been used. Findings It has been determined that the most successful prediction model is k-NN, whereas the prediction model with the lowest performance is SVM. According to the accuracy performance comparison conducted on the test data, k-NN exhibits the highest accuracy rate of 82%, whereas the accuracy rate for the GBR algorithm is 80%, and the accuracy rate for the SVM algorithm is 72%. Originality/value The experimental setup used in this study, including the measurement and monitoring apparatus, has been specifically designed for this research. The system is capable of remote monitoring both through a computer interface and a custom-developed mobile application. Measurements were conducted on the Karabük University campus, thereby revealing the energy potential of the Karabük province. This system serves as an exemplary study and can be deployed to any desired location for remote monitoring. Numerous methods and techniques exist for power prediction. In this study, contemporary machine learning techniques, which are pertinent to power prediction, have been used, and their performances are presented comparatively.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3