Performance Evaluation of Multiple Machine Learning Models in Predicting Power Generation for a Grid-Connected 300 MW Solar Farm

Author:

Aldosari Obaid1ORCID,Batiyah Salem2,Elbashir Murtada3ORCID,Alhosaini Waleed4ORCID,Nallaiyagounder Kanagaraj1ORCID

Affiliation:

1. Department of Electrical Engineering, Prince Sattam Bin Abdulaziz University, Wadi Addawaser 11991, Saudi Arabia

2. Department of Electrical and Electronics Engineering Technology, Yanbu Industrial College, Yanbu Industrial 46452, Saudi Arabia

3. Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakaka 72388, Saudi Arabia

4. Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia

Abstract

Integrating renewable energy sources (RES), such as photovoltaic (PV) systems, into power system networks increases uncertainty, leading to practical challenges. Therefore, an accurate photovoltaic (PV) power prediction model is required to provide essential data that supports smooth power system operation. Hence, the work presented in this paper compares and discusses the results of different machine learning (ML) techniques in predicting the power produced by the 300 MW Sakaka PV Power Plant in the north of Saudi Arabia. The validation of the presented work is performed using real-world operational data obtained from the specified solar farm. Several performance measures, including accuracy, precision, recall, F1 Score, and mean square error (MSE), are used in this work to evaluate the performance of the different ML approaches and determine the most precise prediction model. The obtained results show that the Support Vector Machine (SVM) with a Radial basis function (RBF) is the most effective approach for optimizing solar power prediction in large-scale solar farms.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3