Numerical and experimental study of natural convection heat transfer on flat and corrugated plates

Author:

Verdério Júnior Sílvio Aparecido,Coelho Pedro J.,Scalon Vicente Luiz,del Rio Oliveira Santiago

Abstract

Purpose The purpose of this study is to numerically and experimentally investigate the natural convection heat transfer in flat plates and plates with square, trapezoidal and triangular corrugations. Design/methodology/approach This work is an extension of the previous studies by Verderio et al. (2021a, 2021b, 2021c, 2021d, 2022a). An experimental apparatus was built to measure the plates’ temperatures during the natural convection cooling process. Several physical parameters were evaluated through the experimental methodology. Free and open-source computational tools were used to simulate the experimental conditions and to quantitatively and qualitatively evaluate the thermal plume characteristics over the plates. Findings The numerical results were experimentally validated with reasonable accuracy in the range of studied RaLP for the different plates. Empirical correlations of Nu¯LPexp=f(RaLP), h¯conv=f(RaLP) and Nu¯LPexp(A/AP)=f(RaLP), with good accuracy and statistical representativeness, were obtained for the studied geometries. The convective thermal efficiency of corrugated plates (Δη), as a function of RaLP, was also experimentally studied quantitatively. In agreement with the findings of Oosthuizen and Garrett (2001), the experimental and numerical results proved that the increase in the heat exchange area of the corrugations has a greater influence on the convective exchange and the thermal efficiency than the disturbances caused in the flow (which reduce h¯conv). The plate with trapezoidal corrugations presented the highest convective thermal efficiency, followed by the plates with square and triangular corrugations. It was also proved that the thermal efficiency of corrugated plates increases with RaLP. Practical implications The results demonstrate that corrugated surfaces have greater thermal efficiency than flat plates in heating and/or cooling systems by natural convection. This way, corrugated plates can reduce the dependence on auxiliary forced convection systems, with application in technological areas and Industry 4.0. Originality/value The empirical correlations obtained for the corrected Nusselt number and thermal efficiency for the corrugated plate geometries studied are original and unpublished, as well as the experimental validation of the developed three-dimensional numerical code.

Publisher

Emerald

Subject

Mechanical Engineering,Aerospace Engineering,Computational Mechanics,Engineering (miscellaneous)

Reference33 articles.

1. Laminar natural convection boundary layers on near-horizontal plates;Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,1976

2. Natural convection on horizontal, inclined, and vertical plates with variable surface temperature or heat flux;International Journal of Heat and Mass Transfer,1986

3. Unsteady natural convection in a cubical cavity with a triangular heat source;International Journal of Numerical Methods for Heat and Fluid Flow,2017

4. Effect of trapezoidal heater on natural convection heat transfer and fluid flow inside a cubical cavity;International Journal of Numerical Methods for Heat and Fluid Flow,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3