Author:
Gibanov Nikita,Sheremet Mikhail
Abstract
Purpose
The purpose of this paper is to study natural convective fluid flow and heat transfer inside a cubical cavity having a local heat source of constant temperature.
Design/methodology/approach
The cubical cavity is cooled from two vertical opposite walls and heated from the local heater mounted on the bottom wall, while the rest walls are adiabatic. The governing equations formulated in dimensionless vector potential functions and vorticity vector have been solved using implicit finite difference method of the second-order accuracy. The effects of the Rayleigh number (Ra = 1e+04 – 1e+06), heat source position (l/L = 0.05 – 0.35) and dimensionless time (0 < tau < 100) on velocity and temperature fields, streamlines, isotherms and average Nusselt number at the heat source surface have been analyzed.
Findings
It is found that the extreme left position of the heater (l/L = 0.05) illustrates more essential cooling of the cavity where the thermal plume over the heat source is suppressed by low temperature waves from the cold vertical walls.
Originality/value
The originality of this work is to analyze transient 3D natural convection in a cubical cavity with a heater of triangular shape and compare obtained 3D data with 2D results. It should be noted that for numerical simulation, the authors used vector potential function and vorticity vector that for transient problems allows to reduce the computational time. The results would benefit scientists and engineers to become familiar with the analysis of transient convective heat and mass transfer in 3D domains with local heaters, and the way to predict the properties of convective flow in advanced technical systems, in industrial sectors including transportation, power generation, chemical sectors, ventilation, air-conditioning, etc.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献