A generalised model for electro-osmotic flow in porous media

Author:

Di Fraia Simona,Nithiarasu P.

Abstract

Purpose This study aims at developing a comprehensive model for the analysis of electro-osmotic flow (EOF) through a fluid-saturated porous medium. To fully understand and exploit a number of applications, such a model for EOF through porous media is essential. Design/methodology/approach The proposed model is based on a generalised set of governing equations used for modelling flow through fluid saturated porous media. These equations are modified to incorporate appropriate modifications to represent electro-osmosis (EO). The model is solved through the finite element method (FEM). The validity of the proposed numerical model is demonstrated by comparing the numerical results of internal potential and velocity distribution with corresponding analytical expressions. The model introduced is also used to carry out a sensitivity analysis of the main parameters that control EOF. Findings The analysis carried out confirms that EO in free channels without porous obstruction is effective only at small scales, as largely discussed in the available literature. Using porous media makes EO independent of the channel scale. Indeed, as the channel size increases, the presence of the charged porous medium is essential to induce fluid flow. Moreover, results demonstrate that flow is significantly affected by the characteristics of the porous medium, such as particle size, and by the zeta potential acting on the charged surfaces. Originality/value To the best of the authors’ knowledge, a comprehensive FEM model, based on the generalised equations to simulate EOF in porous media, is proposed here for the first time.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference64 articles.

1. Flow through porous media of a shear-thinning liquid with yield stress;The Canadian Journal of Chemical Engineering,1987

2. Electroosmosis through pores with nonuniformly charged walls;Chemical Engineering Communications,1985

3. Arnold, A.K. (2007), “Numerical modelling of electro-osmotic flow through micro-channels”, PhD Thesis, School of Engineering, Swansea University.

4. A computational fluid dynamics analysis of a pem fuel cell system for power generation;International Journal of Numerical Methods for Heat and Fluid Flow,2007

5. Design of a porous electroosmotic pump used in power electronic cooling;Industry Applications, IEEE Transactions on,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3