Author:
Gupta Akash K.,Yadav Rahul,Das Malay K.,Panigrahi Pradipta K.
Abstract
Purpose
This paper aims to present the implementation of a multi-layer radiation propagation model in simulations of multi-phase flow and heat transfer, for a dissociating methane hydrate reservoir subjected to microwave heating.
Design/methodology/approach
To model the induced heterogeneity due to dissociation of hydrates in the reservoir, a multiple homogeneous layer approach, used in food processes modelling, is suggested. The multi-layer model is incorporated in an in-house, multi-phase, multi-component hydrate dissociation simulator based on the finite volume method. The modified simulator is validated with standard experimental results in the literature and subsequently applied to a hydrate reservoir to study the effect of water content and sand dielectric nature on radiation propagation and hydrate dissociation.
Findings
The comparison of the multi-layer model with experimental results show a maximum difference in temperature estimation to be less than 2.5 K. For reservoir scale simulations, three homogeneous layers are observed to be sufficient to model the induced heterogeneity. There is a significant contribution of dielectric properties of sediments and water content of the reservoir in microwave radiation attenuation and overall hydrate dissociation. A high saturation reservoir may not always provide high gas recovery by dissociation of hydrates in the case of microwave heating.
Originality/value
The multi-layer approach to model microwave radiation propagation is introduced and tested for the first time in dissociating hydrate reservoirs. The multi-layer model provides better control over reservoir heterogeneity and interface conditions compared to existing homogeneous models.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Reference54 articles.
1. Production increase of heavy oils by electromagnetic heating;Journal of Canadian Petroleum Technology,1976
2. Petroleum reservoir engineering physical properties,1960
3. Finite element modelling of electro‐osmotic flows on unstructured meshes;International Journal of Numerical Methods for Heat and Fluid Flow,2008
4. Modelling transport processes during microwave heating: a review;Reviews in Chemical Engineering,1997
5. Microwave heating: an evaluation of power formulations;Chemical Engineering Science,1991
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献