A big data framework for facilitating product innovation processes

Author:

Zhan Yuanzhu,Tan Kim Hua,Ji Guojun,Chung Leanne,Tseng Minglang

Abstract

Purpose The purpose of this paper is to suggest how firms could use big data to facilitate product innovation processes, by shortening the time to market, improving customers’ product adoption and reducing costs. Design/methodology/approach The research is based on a two-step approach. First, this research identifies four potential key success factors for organisations to integrate big data in accelerating their product innovation processes. The proposed factors are further examined and developed by conducting interviews with different organisation experts and academic researchers. Then a framework is developed based on the interview outputs. The framework sets out the key success factors involved in leveraging big data to reduce lead times and costs in product innovation processes. Findings The three determined key success factors are: accelerated innovation process; customer connection; and an ecosystem of innovation. The authors believe that the developed framework based on big data represents a paradigm shift. It can help firms to make new product development dramatically faster and less costly. Research limitations/implications The proposed accelerated innovation processes demand a shift in traditional organisational culture and practices. It is, though, meaningful only for products and services with short life cycles. Moreover, the framework has not yet been widely tested. Practical implications This paper points to the vital role of big data in helping firms to accelerate product innovation processes. First of all, it allows organisations to launch new products to market as quickly as possible. Second, it helps organisations to determine the weaknesses of the product earlier in the development cycle. Third, it allows functionalities to be added to a product that customers are willing to pay a premium for, while eliminating features they do not want. Last, but not least, it identifies and then prioritises customer needs for specific markets. Originality/value The research shows that firms could harvest external knowledge and import ideas across organisational boundaries. An accelerated innovation process based on big data is characterised by a multidimensional process involving intelligence efforts, relentless data collection and flexible working relationships with team members.

Publisher

Emerald

Subject

Business, Management and Accounting (miscellaneous),Business and International Management

Reference90 articles.

1. Match your innovation strategy to your innovation ecosystem;Harvard Business Review,2006

2. The benefits of combining data with empathy;MIT Sloan Management Review,2012

3. BPR implementation process: an analysis of key success and failure factors;Business Process Management Journal,1999

4. Customer involvement in new service development: a conversational approach;Managing Service Quality: An International Journal,2004

5. An exploratory analysis of the impact of market orientation on new product performance a contingency approach;Journal of Product Innovation Management,1995

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3