Decision-making framework with double-loop learning through interpretable black-box machine learning models

Author:

Bohanec Marko,Robnik-Šikonja Marko,Kljajić Borštnar Mirjana

Abstract

Purpose The purpose of this paper is to address the problem of weak acceptance of machine learning (ML) models in business. The proposed framework of top-performing ML models coupled with general explanation methods provides additional information to the decision-making process. This builds a foundation for sustainable organizational learning. Design/methodology/approach To address user acceptance, participatory approach of action design research (ADR) was chosen. The proposed framework is demonstrated on a B2B sales forecasting process in an organizational setting, following cross-industry standard process for data mining (CRISP-DM) methodology. Findings The provided ML model explanations efficiently support business decision makers, reduce forecasting error for new sales opportunities, and facilitate discussion about the context of opportunities in the sales team. Research limitations/implications The quality and quantity of available data affect the performance of models and explanations. Practical implications The application in the real-world company demonstrates the utility of the approach and provides evidence that transparent explanations of ML models contribute to individual and organizational learning. Social implications All used methods are available as an open-source software and can improve the acceptance of ML in data-driven decision making. Originality/value The proposed framework incorporates existing ML models and general explanation methodology into a decision-making process. To the authors’ knowledge, this is the first attempt to support organizational learning with a framework combining ML explanations, ADR, and data mining methodology based on the CRISP-DM industry standard.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Industrial relations,Management Information Systems

Reference48 articles.

1. Reliance, trust and heuristics in judgmental forecasting;Computers in Human Behavior,2014

2. Golden rule of forecasting: be conservative;Journal of Business Research,2015

3. The differential use and effect of knowledge-based system explanations in novice and expert judgment decisions;MIS Quarterly,2006

4. Bohanec, M. (2016), “B2B data set in CSV format available for download”, available at: www.salvirt.com/research/B2Bdataset (accessed September 1, 2016).

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3