An efficient design of dual-axis MEMS accelerometer considering microfabrication process limitations and operating environment variations

Author:

Tahir Muhammad Ahmad Raza,Saleem Muhammad Mubasher,Bukhari Syed Ali Raza,Hamza Amir,Shakoor Rana Iqtidar

Abstract

PurposeThis paper aims to present an efficient design approach for the micro electromechanical systems (MEMS) accelerometers considering design parameters affecting the long-term reliability of these inertial sensors in comparison to traditional iterative microfabrication and experimental characterization approach. Design/methodology/approachA dual-axis capacitive MEMS accelerometer design is presented considering the microfabrication process constraints of the foundry process. The performance of the MEMS accelerometer is analyzed through finite element method– based simulations considering main design parameters affecting the long-term reliability. The effect of microfabrication process induced residual stress, operating pressure variations in the range of 10 mTorr to atmospheric pressure, thermal variations in the operating temperature range of −40°C to 100°C and impulsive input acceleration at different input frequency values is presented in detail. FindingsThe effect of residual stress is negligible on performance of the MEMS accelerometer due to efficient design of mechanical suspension beams. The effect of operating temperature and pressure variations is negligible on energy loss factor. The thermal strain at high temperature causes the sensing plates to deform out of plane. The input dynamic acceleration range is 34 g at room temperature, which decreases with operating temperature variations. At low frequency input acceleration, the input acts as a quasi-static load, whereas at high frequency, it acts as a dynamic load for the MEMS accelerometer. Originality/valueIn comparison with the traditional MEMS accelerometer design approaches, the proposed design approach focuses on the analysis of critical design parameters that affect the long-term reliability of MEMS accelerometer.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference24 articles.

1. A new design and a fabrication approach to realize a high performance three axes capacitive MEMS accelerometer;Sensors and Actuators A: Physical,2016

2. Squeeze film air damping in MEMS;Sensors and Actuators A: Physical,2007

3. Optimization of MEMS capacitive accelerometer;Microsystem Technologies,2013

4. Design and characterization of a buckling-resistant perforated MEMS membrane under residual stress;Journal of Micromechanics and Microengineering,2020

5. Microfabrication Process-Driven design;FEM Analysis and System Modeling of 3-DoF Drive Mode and 2-DoF Sense Mode Thermally Stable Non-Resonant MEMS Gyroscope. Micromachines,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3