Non-linear dynamics and stability of rolling bearing–axle coupling system of a railway freight wagon with the change of axle rotating speed

Author:

Juping Yang,Wang JunguoORCID,Yongxiang ZhaoORCID

Abstract

PurposeThe purpose of this paper is to investigate the non-linear characteristics and stability of the rolling bearing–axle coupling system under the excitation of the axle/wheel speed of railway freight cars, so as to put forward a rationale for judging the vibration law and running stability of railway freight wagon.Design/methodology/approachConsidering the effects of eccentric force of the railway wagon axle, the non-linear resistance of the wagon and non-linear support forces of axle box rolling bearings, a centralized mass model of rolling bearing-axle coupling system of railway freight wagon is presented on the basis of the theory of rotor dynamics and non-linear dynamics. Then the Runge-Kutta method is adopted to solve the non-linear response of the proposed system, and numerical simulation including bifurcation diagrams, axis trajectory curves, phase plane plots, Poincaré sections and amplitude spectras are analysed when the axle rotating speed is changed. Meantime, the relation curve between Floquet multiplier and axle rotating speed, which affects the stability of coupling system, is plotted by numerical method based on the Floquet theory and method.FindingsThe simulation results of the dynamic model reveal the abundant dynamic behaviour of the coupling system when the axle rotating speed changes, including single period, quasi period, multi-period and chaotic motion, as well as the evolution law from multi-period motion to chaotic motion. And especially, the bearing–axle coupling system is in stable state with a single period motion when the axle rotating speed changes from 410 rpm to 510 rpm, in which the running speed of railway freight wagon is changed from 62 km/h to 80 km/h, the vibration displacement of the coupling system in X direction is between 1.2 mm and 1.8 mm, and the vibration displacement of the coupling system in Y direction is between 1.0 mm and 1.45 mm. Meanwhile, the influence law of axle rotating speed on the stability is obtained by comparing the bifurcation diagram and Floquet multiplier graph of the coupling system.Originality/valueThe numerical simulation data obtained in this study can provide a theoretical evidence for designing the running speed of railway freight wagon, utilizing or controlling the non-linear dynamic behaviours of the proposed coupling system, and ensuring the stability of railway freight wagons.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference30 articles.

1. A dynamic wheel–rail impact analysis of railway track under wheel flat by finite element analysis;Vehicle System Dynamics,2013

2. An evaluation on vibration analysis of Y32 bogie used in railway systems,2019

3. Analysis on nonlinear dynamic characteristics of rolling bearings for multiple unit trains;Bearing,2013

4. Freight trains dynamics effect of payload and braking power distribution on coupling forces;Vehicle System Dynamics,2017

5. The effect of train composition on the running safety of low-flatcar wagons in braking and curving manoeuvres,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3