Corrosion loop development of oil and gas piping system based on machine learning and group technology method

Author:

Rachman AndikaORCID,Ratnayake R.M. Chandima

Abstract

Purpose Corrosion loop development is an integral part of the risk-based inspection (RBI) methodology. The corrosion loop approach allows a group of piping to be analyzed simultaneously, thus reducing non-value adding activities by eliminating repetitive degradation mechanism assessment for piping with similar operational and design characteristics. However, the development of the corrosion loop requires rigorous process that involves a considerable amount of engineering man-hours. Moreover, corrosion loop development process is a type of knowledge-intensive work that involves engineering judgement and intuition, causing the output to have high variability. The purpose of this paper is to reduce the amount of time and output variability of corrosion loop development process by utilizing machine learning and group technology method. Design/methodology/approach To achieve the research objectives, k-means clustering and non-hierarchical classification model are utilized to construct an algorithm that allows automation and a more effective and efficient corrosion loop development process. A case study is provided to demonstrate the functionality and performance of the corrosion loop development algorithm on an actual piping data set. Findings The results show that corrosion loops generated by the algorithm have lower variability and higher coherence than corrosion loops produced by manual work. Additionally, the utilization of the algorithm simplifies the corrosion loop development workflow, which potentially reduces the amount of time required to complete the development. The application of corrosion loop development algorithm is expected to generate a “leaner” overall RBI assessment process. Research limitations/implications Although the algorithm allows a part of corrosion loop development workflow to be automated, it is still deemed as necessary to allow the incorporation of the engineer’s expertise, experience and intuition into the algorithm outputs in order to capture tacit knowledge and refine insights generated by the algorithm intelligence. Practical implications This study shows that the advancement of Big Data analytics and artificial intelligence can promote the substitution of machines for human labors to conduct highly complex tasks requiring high qualifications and cognitive skills, including inspection and maintenance management area. Originality/value This paper discusses the novel way of developing a corrosion loop. The development of corrosion loop is an integral part of the RBI methodology, but it has less attention among scholars in inspection and maintenance-related subjects.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Safety, Risk, Reliability and Quality

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3