A computer vision approach to improve maintenance automation for thermal power plants lubrication systems

Author:

Bao Nengsheng,Fan YuchenORCID,Li Chaoping,Simeone AlessandroORCID

Abstract

PurposeLubricating oil leakage is a common issue in thermal power plant operation sites, requiring prompt equipment maintenance. The real-time detection of leakage occurrences could avoid disruptive consequences caused by the lack of timely maintenance. Currently, inspection operations are mostly carried out manually, resulting in time-consuming processes prone to health and safety hazards. To overcome such issues, this paper proposes a machine vision-based inspection system aimed at automating the oil leakage detection for improving the maintenance procedures.Design/methodology/approachThe approach aims at developing a novel modular-structured automatic inspection system. The image acquisition module collects digital images along a predefined inspection path using a dual-light (i.e. ultraviolet and blue light) illumination system, deploying the fluorescence of the lubricating oil while suppressing unwanted background noise. The image processing module is designed to detect the oil leakage within the digital images minimizing detection errors. A case study is reported to validate the industrial suitability of the proposed inspection system.FindingsOn-site experimental results demonstrate the capabilities to complete the automatic inspection procedures of the tested industrial equipment by achieving an oil leakage detection accuracy up to 99.13%.Practical implicationsThe proposed inspection system can be adopted in industrial context to detect lubricant leakage ensuring the equipment and the operators safety.Originality/valueThe proposed inspection system adopts a computer vision approach, which deploys the combination of two separate sources of light, to boost the detection capabilities, enabling the application for a variety of particularly hard-to-inspect industrial contexts.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Safety, Risk, Reliability and Quality

Reference46 articles.

1. Detection of transformer oil leakage based on image processing;Electric Power Construction,2013

2. A machine vision—based pipe leakage detection system for automated power plant maintenance;Sensors,2022

3. Comparative dataset of experimental and computational attributes of UV/vis absorption spectra;Scientific Data,2019

4. Underwater image recovery using structured light;IEEE Access IEEE,2019

5. Modeling, identification, and control of coal-fired thermal power plants;Reviews in Chemical Engineering,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3