Classification of electrocardiogram signal using an ensemble of deep learning models

Author:

Pandey Saroj Kumar,Janghel Rekh Ram

Abstract

PurposeAccording to the World Health Organization, arrhythmia is one of the primary causes of deaths across the globe. In order to reduce mortality rate, cardiovascular disease should be properly identified and the proper treatment for the same should be immediately provided to the patients. The objective of this paper was to implement a better heartbeat classification model which will work better than the other implemented heartbeat classification methods.Design/methodology/approachIn this paper, the ensemble of two deep learning models is proposed to classify the MIT-BIH arrhythmia database into four different classes according to ANSI-AAMI standards. First, a convolutional neural network (CNN) model is used to classify heartbeats on a raw data set. Secondly, four features (wavelets, R-R intervals, morphological and higher-order statistics) are extracted from the data set and then applied to a long short-term memory (LSTM) model to classify the heartbeats. Finally, the ensemble of CNN and LSTM model with sum rule, product rule and majority voting has been used to identify the heartbeat classes.FindingsAmong these, the highest accuracy obtained is 98.58% using ensemble method with product rule. The results show that the ensemble of CNN and BLSTM has offered satisfactory performance compared to other techniques discussed in this study.Originality/valueIn this study, we have developed a new combination of two deep learning models to enhance the performance of arrhythmia classification using segmentation of input ECG signals. The contributions of this study are as follows: First, a deep CNN model is built to classify ECG heartbeat using a raw data set. Second, four types of features (R-R interval, HOS, morphological and wavelet) were extracted from the raw data set and then applied to the bidirectional LSTM model to classify the ECG heartbeat. Third, combination rules (sum rules, product rules and majority voting rules) were tested to ensure the accumulated probabilities of the CNN and LSTM models.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference51 articles.

1. Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals;Applied Intelligence,2019

2. Classification of AAMI heartbeat classes with an interactive ELM ensemble learning approach;Biomedical Signal Processing and Control,2015

3. Detection of life-threatening arrhythmias using feature selection and support vector machines;IEEE Transactions on Biomedical Engineering,2013

4. Heartbeat classification using projected and dynamic features of ECG signal;Biomedical Signal Processing and Control,2017

5. Arrhythmia recognition and classification using ECG morphology and segment feature analysis;IEEE/ACM Transactions on Computational Biology and Bioinformatics,2018

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on switch cabinet fault diagnosis algorithm based on voiceprint feature fusion;International Conference on Algorithms, Software Engineering, and Network Security;2024-04-26

2. Arrhythmia classification based on multi-feature multi-path parallel deep convolutional neural networks and improved focal loss;Mathematical Biosciences and Engineering;2024

3. Output regeneration defense against membership inference attacks for protecting data privacy;International Journal of Web Information Systems;2023-07-10

4. Music sentiment classification based on an optimized CNN-RF-QPSO model;Data Technologies and Applications;2023-03-17

5. Classification of Electrocardiogram Signal Using Hybrid Deep Learning Techniques;Lecture Notes in Electrical Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3