Author:
Pandey Saroj Kumar,Janghel Rekh Ram
Abstract
PurposeAccording to the World Health Organization, arrhythmia is one of the primary causes of deaths across the globe. In order to reduce mortality rate, cardiovascular disease should be properly identified and the proper treatment for the same should be immediately provided to the patients. The objective of this paper was to implement a better heartbeat classification model which will work better than the other implemented heartbeat classification methods.Design/methodology/approachIn this paper, the ensemble of two deep learning models is proposed to classify the MIT-BIH arrhythmia database into four different classes according to ANSI-AAMI standards. First, a convolutional neural network (CNN) model is used to classify heartbeats on a raw data set. Secondly, four features (wavelets, R-R intervals, morphological and higher-order statistics) are extracted from the data set and then applied to a long short-term memory (LSTM) model to classify the heartbeats. Finally, the ensemble of CNN and LSTM model with sum rule, product rule and majority voting has been used to identify the heartbeat classes.FindingsAmong these, the highest accuracy obtained is 98.58% using ensemble method with product rule. The results show that the ensemble of CNN and BLSTM has offered satisfactory performance compared to other techniques discussed in this study.Originality/valueIn this study, we have developed a new combination of two deep learning models to enhance the performance of arrhythmia classification using segmentation of input ECG signals. The contributions of this study are as follows: First, a deep CNN model is built to classify ECG heartbeat using a raw data set. Second, four types of features (R-R interval, HOS, morphological and wavelet) were extracted from the raw data set and then applied to the bidirectional LSTM model to classify the ECG heartbeat. Third, combination rules (sum rules, product rules and majority voting rules) were tested to ensure the accumulated probabilities of the CNN and LSTM models.
Subject
Library and Information Sciences,Information Systems
Reference51 articles.
1. Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals;Applied Intelligence,2019
2. Classification of AAMI heartbeat classes with an interactive ELM ensemble learning approach;Biomedical Signal Processing and Control,2015
3. Detection of life-threatening arrhythmias using feature selection and support vector machines;IEEE Transactions on Biomedical Engineering,2013
4. Heartbeat classification using projected and dynamic features of ECG signal;Biomedical Signal Processing and Control,2017
5. Arrhythmia recognition and classification using ECG morphology and segment feature analysis;IEEE/ACM Transactions on Computational Biology and Bioinformatics,2018
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献