Arrhythmia classification based on multi-feature multi-path parallel deep convolutional neural networks and improved focal loss

Author:

Ran Zhongnan1,Jiang Mingfeng2,Li Yang2,Wang Zhefeng3,Wu Yongquan3,Ke Wei4,Xia Ling5

Affiliation:

1. School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China

2. School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China

3. Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China

4. School of Applied Sciences, Macao Polytechnic Institute, Macao SAR, China

5. Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

<abstract> <p>Early diagnosis of abnormal electrocardiogram (ECG) signals can provide useful information for the prevention and detection of arrhythmia diseases. Due to the similarities in Normal beat (<italic>N</italic>) and Supraventricular Premature Beat (<italic>S</italic>) categories and imbalance of ECG categories, arrhythmia classification cannot achieve satisfactory classification results under the inter-patient assessment paradigm. In this paper, a multi-path parallel deep convolutional neural network was proposed for arrhythmia classification. Furthermore, a global average RR interval was introduced to address the issue of similarities between <italic>N</italic> vs. <italic>S</italic> categories, and a weighted loss function was developed to solve the imbalance problem using the dynamically adjusted weights based on the proportion of each class in the input batch. The MIT-BIH arrhythmia dataset was used to validate the classification performances of the proposed method. Experimental results under the intra-patient evaluation paradigm and inter-patient evaluation paradigm showed that the proposed method could achieve better classification results than other methods. Among them, the accuracy, average sensitivity, average precision, and average specificity under the intra-patient paradigm were 98.73%, 94.89%, 89.38%, and 98.24%, respectively. The accuracy, average sensitivity, average precision, and average specificity under the inter-patient paradigm were 91.22%, 89.91%, 68.23%, and 95.23%, respectively.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference32 articles.

1. World Health Organization, Cardiovascular diseases (CVDs), WHO Cardiovascular Diseases Factsheet 2021, 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).

2. O. M. A. Ali, S. W. Kareem, A. S. Mohammed, Evaluation of electrocardiogram signals classifycation using CNN, SVM, and LSTM algorithm: A review, in 2022 8th International Engineering Conference on Sustainable Technology and Development (IEC), IEEE, (2022), 185–191. https://doi.org/10.1109/IEC54822.2022.9807511

3. P. S. Ignacio, J. A. Bulauan, J. R. Manzanares, A topology informed random forest classifier for ECG classification, in 2020 Computing in Cardiology, IEEE, (2020), 1–4. https://doi.org/10.22489/CinC.2020.297

4. B. Venkataramanaiah, J. Kamala, ECG signal processing and KNN classifier-based abnormality detection by VH-doctor for remote cardiac healthcare monitoring, Soft Comput., 24 (2020), 17457–17466. https://doi.org/10.1007/s00500-020-05191-1

5. S. Sahoo, A. Subudhi, M. Dash, S. Sabut, Automatic classification of cardiac arrhythmias based on hybrid features and decision tree algorithm, Int. J. Autom. Comput., 17 (2020), 551–561. https://doi.org/10.1007/s11633-019-1219-2

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3