Towards reliable prediction of academic performance of architecture students using data mining techniques

Author:

Aluko Ralph Olusola,Daniel Emmanuel Itodo,Shamsideen Oshodi Olalekan,Aigbavboa Clinton Ohis,Abisuga Abiodun Olatunji

Abstract

Purpose In recent years, there has been a tremendous increase in the number of applicants seeking placements in undergraduate architecture programs. It is important during the selection phase of admission at universities to identify new intakes who possess the capability to succeed. Admission variable (i.e. prior academic achievement) is one of the most important criteria considered during the selection process. This paper aims to investigates the efficacy of using data mining techniques to predict the academic performance of architecture students based on information contained in prior academic achievement. Design/methodology/approach The input variables, i.e. prior academic achievement, were extracted from students’ academic records. Logistic regression and support vector machine (SVM) are the data mining techniques adopted in this study. The collected data were divided into two parts. The first part was used for training the model, while the other part was used to evaluate the predictive accuracy of the developed models. Findings The results revealed that SVM model outperformed the logistic regression model in terms of accuracy. Taken together, it is evident that prior academic achievement is a good predictor of academic performance of architecture students. Research limitations/implications Although the factors affecting academic performance of students are numerous, the present study focuses on the effect of prior academic achievement on academic performance of architecture students. Originality/value The developed SVM model can be used as a decision-making tool for selecting new intakes into the architecture program at Nigerian universities.

Publisher

Emerald

Subject

General Engineering

Reference60 articles.

1. Pre-qualification academic requirement as a predictor of academic performance in a building technology programme: a case of Lagos State Polytechnic;Covenant Journal of Research in the Built Environment,2015

2. Entry qualifications and academic performance of architecture students in Nigerian Polytechnics: are the admission requirements still relevant?;Frontiers of Architectural Research,2014

3. Academic success determinants for undergraduate real estate students;Journal of Real Estate Practice and Education,2007

4. Educational data mining: a systematic review of the published literature 2006-2013,2014

5. Predicting the academic success of architecture students by pre-enrolment requirement: using machine-learning techniques;Construction Economics and Building,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3