A sustainable formwork system based on ice pattern and sand mould for fabricating customised concrete components

Author:

Li Wei,Lin Xiaoshan,Xie Yi Min

Abstract

Purpose Optimised concrete components are often of complex geometries, which are difficult and costly to cast using traditional formworks. This paper aims to propose an innovative formwork system for optimised concrete casting, which is eco-friendly, recyclable and economical. Design/methodology/approach In the proposed formwork system, ice is used as mould pattern to create desired geometry for concrete member, then sand mould is fabricated based on the ice pattern. A mix design and a mixing procedure for the proposed sand mould are developed, and compression tests are also performed to ensure sufficient strength of the sand mould. Furthermore, surface preparation of the sand mould is investigated for easy demoulding and for achieving good concrete surface quality. Additionally, recyclability of the proposed sand mould is tested. Findings The proposed mix design and mixing procedure can provide sufficient strength for sand mould in concrete casting. The finished components exhibit smooth surfaces and match designed geometries, and the proposed sand mould can be fully recycled with satisfactory strength. Originality/value To the best of the authors’ knowledge, this is the first study that combines ice pattern and sand mould to create recyclable formwork system for concrete casting. The new techniques developed in this research has great potential to be applied in the fabrication of large-scale concrete structures with complex geometries.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference29 articles.

1. Morphological properties of the cement skin: understanding the effect of contact with formwork;Case Studies in Construction Materials,2022

2. Design, analysis and realisation of topology optimized concrete structures;Journal of the International Association for Shell and Spatial Structures,2012

3. A comparative study on newly emerging type of formwork systems with conventional type of form work systems;Materials Today: Proceedings,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3