Consumers’ receptivity to mHealth technologies: a hybrid PLS–ANN approach

Author:

Ooi Say KeatORCID,Yeap Jasmine A.L.,Lam Shir Li,Gim Gabriel C.W.

Abstract

PurposeMobile health (mHealth) technologies, in particular, have been sought after and advocated as a means of dealing with the pandemic situation. Despite the obvious advantages of mHealth, which include monitoring and exchanging health information via mobile applications, mHealth adoption has yet to take off exponentially. Expanding on the unified theory of acceptance and use of technology (UTAUT) model, this study aims to better comprehend consumers’ receptivity to mHealth even after the pandemic has subsided.Design/methodology/approachThrough purposive sampling, data were collected from a sample of 345 mobile phone users and analysed using partial least squares structural equation modelling (PLS-SEM) and artificial neural networks (ANN) capture both linear and nonlinear relationships.FindingsEffort expectancy, performance expectancy, social influence, pandemic fear and trustworthiness positively influenced mHealth adoption intention, with the model demonstrating high predictive power from both the PLSpredict and ANN assessments.Research limitations/implicationsThe importance–performance map analysis (IPMA) results showed that social influence had great importance for mHealth uptake, but demonstrated low performance.Practical implicationsReferrals are an alternative that policymakers and mHealth service providers should think about to increase uptake. Overall, this study provides theoretical and practical insights that contribute to the advancement of digital healthcare, aligning with the pursuit of Sustainable Development Goal 3 (SDG 3) (good health and well-being).Originality/valueThis study has clarified both linear and nonlinear relationships among the factors influencing intentions to adopt mHealth. The findings from both PLS and ANN were juxtaposed, demonstrating consistent findings.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3