Scientific data management policy in China: a quantitative content analysis based on policy text

Author:

Si LiORCID,Liu LiORCID,He YiORCID

Abstract

PurposeThis paper aims to understand the current development situation of scientific data management policy in China, analyze the content structure of the policy and provide a theoretical basis for the improvement and optimization of the policy system.Design/methodology/approachChina's scientific data management policies were obtained through various channels such as searching government websites and policy and legal database, and 209 policies were finally identified as the sample for analysis after being screened and integrated. A three-dimensional framework was constructed based on the perspective of policy tools, combining stakeholder and lifecycle theories. And the content of policy texts was coded and quantitatively analyzed according to this framework.FindingsChina's scientific data management policies can be divided into four stages according to the time sequence: infancy, preliminary exploration, comprehensive promotion and key implementation. The policies use a combination of three types of policy tools: supply-side, environmental-side and demand-side, involving multiple stakeholders and covering all stages of the lifecycle. But policy tools and their application to stakeholders and lifecycle stages are imbalanced. The development of future scientific data management policy should strengthen the balance of policy tools, promote the participation of multiple subjects and focus on the supervision of the whole lifecycle.Originality/valueThis paper constructs a three-dimensional analytical framework and uses content analysis to quantitatively analyze scientific data management policy texts, extending the research perspective and research content in the field of scientific data management. The study identifies policy focuses and proposes several strategies that will help optimize the scientific data management policy.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference72 articles.

1. The growth and gaps of genetic data sharing policies in the United States;Journal of Law and the Biosciences,2015

2. Advances in the study of domestic and foreign scientific data management methods;Journal of Agricultural Big Data,2019

3. The research data life cycle, legacy data, and dilemmas in research data management;Journal of the Association for Information Science and Technology,2022

4. Institutional, funder, and journal data policies;Curating Research Data,2017

5. Scientific data management and sharing policies of UK research funder;Library and Information Service,2013

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3