Oscillatory flow convection in a melted pool

Author:

Morvan D.,Bournot Ph.

Abstract

A two‐dimensional laser surface remelting problem is numerically simulated. The mathematical formulation of this multiphase problem is obtained using a continuum model, constructed from classical mixture theory. This formulation permits the construction of a set of continuum conservation equations for pure or binary, solid‐liquid phase change systems. The numerical resolution of this set of coupled partial differential equations is performed using a finite volume method associated with a PISO algorithm. The numerical results show the modifications caused by an increase of the free surface shear stress (represented by the Reynolds number Re) upon the stability of the thermocapillary flow in the melting pool. The solutions exhibit a symmetry‐breaking flow transition, oscillatory behaviour at higher values of Re. Spectral analysis of temperature and velocity signals for particular points situated in the melted pool, show that these oscillations are at first mono‐periodic them new frequencies appear generating a quasi‐periodic behaviour. These oscillations of the flow in the melted pool could induce the deformation of the free surface which in turn could explain the formation of surface ripples observed during laser surface treatments (surface remelting, cladding) or laser welding.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3