Short Time Correlation Analysis of Melt Pool Behavior in Laser Metal Deposition Using Coaxial Optical Monitoring

Author:

Zavalov Yury N.ORCID,Dubrov Alexander V.ORCID

Abstract

The development and improvement of monitoring and process control systems is one of the important ways of advancing laser metal deposition (LMD). The control of hydrodynamic, heat and mass transfer processes in LMD is extremely important, since these processes directly affect the crystallization of the melt and, accordingly, the microstructural properties and the overall quality of the synthesized part. In this article, the data of coaxial video monitoring of the LMD process were used to assess the features of melt dynamics. The obtained images were used to calculate the time dependences of the characteristics of the melt pool (MP) (temperature, width, length and area), which were further processed using the short-time correlation (STC) method. This approach made it possible to reveal local features of the joint behavior of the MP characteristics, and to analyze the nature of the melt dynamics. It was found that the behavior of the melt in the LMD is characterized by the presence of many time periods (patterns), during which it retains a certain ordered character. The features of behavior that are important from the point of view of process control systems design are noted. The approach used for the analysis of melt dynamics based on STC distributions of MP characteristics, as well as the method for determining the moments of pattern termination through the calculation of the correlation power, can be used in processing the results of online LMD diagnostics, as well as in process control systems.

Funder

Ministry of Science and Higher Education

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3