Microenvironment evolution and SCC behavior of subsea pipeline within disbonded coating crevice in a seawater environment under cathodic protection

Author:

Zhang Wei,Liu Hongqun,Hu Minglei,Wu Wei

Abstract

Purpose This paper aims to make clear the sensitive zone of subsea pipeline to stress corrosion cracking (SCC) under a disbonded coating. Design/methodology/approach The change of microenvironment under a disbonded coating in artificial seawater was analyzed by using a rectangular crevice cell. The SCC behavior of subsea pipeline was studied by slow strain rate tensile tests. Findings The microenvironment at the crevice bottom exhibits obvious acidification, Cl- aggregation and cathodic protection potential (CP) rise. Accordingly, the susceptibility of X70 steels to SCC is high due to the intensive anodic dissolution effect. At the opening, hydrogen atom can access into the steel and induce hydrogen embrittlement effect on account of the applied over-protected CP potential, resulting in a relatively high susceptibility to SCC. The corrosiveness of the microenvironment at crevice middle, however, is mild with proper CP potential; thus, the susceptibility of X70 steel to SCC here is lower than that obtained at the opening and the crevice bottom. Originality/value A rectangular crevice cell is built to survey the microenvironment evolution under a disbonded coating in situ. The sensitive zone of subsea pipeline to SCC under a disbonded coating is clarified.

Publisher

Emerald

Subject

General Materials Science,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3