Multicharacteristics optimization of electrical discharge micro hole drilling in Mg alloy using hybrid approach of GRA–regression–PSO

Author:

Ahuja Neeraj,Batra Uma,Kumar Kamal

Abstract

PurposeMagnesium alloys are becoming prominent as an alternative to the permanent biomedical implants. In present work, electric discharge drilling (EDD) process has been investigated and optimized for ZM21 Mg alloy that can be used for producing perforated bone implants having geometrically precise micro holes.Design/methodology/approachPlanning of experiments has been carried out in accordance to the Taguchi mixed L18 orthogonal array (OA). The hole overcut (HO), circularity at entrance (Cent) and circularity at exit (Cext) of drilled micro holes were measured as response characteristics during experimentation corresponding to different settings of EDD input parameters. For optimizing multiresponse characteristics, the hybrid approach of grey relational analysis, regression analysis and particle swarm optimization has been implemented.FindingsIt is found from hybrid approach that brass electrode along with Ip; 3 Amp, Ton; 50 µs and Toff; 52 µs outperformed over all other parametric settings against the collective result of response characteristics. The experimental values of response characteristics at suggested optimized setting are HO: 93.48 µm; Cent: 0.988 and Cext: 0.992, respectively.Originality/valueThe optimization of EDD process for developing perforated Mg alloy bone implants, using hybrid approach is still missing.

Publisher

Emerald

Reference32 articles.

1. Fabrication of biodegradable Mg alloy bone scaffold through electrical discharge µ-drilling route,2019

2. Optimization of micro-EDM drilling of Inconel 718 superalloy;The International Journal of Advanced Manufacturing Technology,2013

3. Characterization of hole circularity and heat affected zone in pulsed CO2 laser drilling of alumina ceramics;Optics and Laser Technology,2013

4. Finite element modeling of material removal rate in micro-EDM process with and without ultrasonic vibration;Grey Systems: Theory and Application,2020

5. Introduction to grey system theory;Journal of Grey System,1989

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3