Antireflective and passivation properties of the photovoltaic structure with Al2O3 layer of different thickness

Author:

Swatowska Barbara

Abstract

Purpose The purpose of this study is to verify the possibility of applying alumina (Al2O3) as the passivation and antireflective coating in silicon solar cells. Design/methodology/approach Model of a studied structure contains the following layers: Al2O3/n+/n-type Si/p+/Al2O3. Optical parameters of the aluminium oxide films on silicon wafers were measured in the range of wavelengths from 250 to 1,400 nm with a spectrophotometer Perkin Elmer Lambda 900. The minority carrier lifetime at the start of the n-type Si base material and after each of the next technological process was analysed by a quasi-steady-state photoconductance technique. The electrical parameters of the solar cells fabricated with four different thickness of the Al2O3 layer were determined on the basis of the current-voltage (I-V) characteristics. The silicon solar cells of 25 cm2 area and 300 µm thickness were investigated. Findings The optimum thickness of alumina as passivation layer is 90 nm. However, considering also antireflective properties of the first layer of a photovoltaic cell, the best structure is silicon with alumina passivation layer of 30 nm thickness and with TiO2 antireflective coatings of 60 nm thickness. Such solution has allowed to produce the cells with the fill factor of 0.77 and open circuit voltage of 618 mV. Originality/value Measurements confirmed the possibility of applying the Al2O3 as a passivation and antireflective coating (obtained by atomic layer deposition method) for improving the efficiency of solar cells.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3