Applying multivariate linear regression and multi-layer perceptron artificial neural network to design an energy consumption baseline in a low density polyethylene plant

Author:

Hamedi Behnam,Mokhtar Alireza

Abstract

Purpose The purpose of this study is to investigate and analysis of energy consumption for this industry. The core part of any energy management system (EnMS) in industry is to perfectly monitor the energy consumption of significant users and to continuously improve the energy performance. In petrochemical plants, production deals with energy-intensive processes, and measuring energy performance for recognition and assessment of potentials for saving is critical. Design/methodology/approach The required data are exploited for the period of March 2011-August 2016 (data set: 2,012 days). Multivariate linear regression (MLR) and multi-layer perceptron artificial neural network (ANN) methods are separately used to anticipate the energy consumption. The baseline will be assumed as a reference to be compared with the actual data to estimate the real saving values. Finally, cumulative summations (CUSUM) are proposed and applied as an effective indicator for measurement of energy performance in an LDPE. Findings In this study, two statistical methods of MLR and ANN were used to design and develop a comprehensive energy baseline representing the predicted amounts of energy consumption based on the recognized drivers. Although both models imply robust outcomes, when the relative errors are taken into account, performance of ANN models appears fairly superior compared to the MLR model. Originality/value It is highly suggested to the ISO technical committee dealing with energy management standards, to consider the proposed model for baseline development in the future version of the standard ISO 50006 as the supplementary extension for the ISO 50001 for measuring energy performance using EnB and EnPI. As for future studies, the research can be extended to investigate the uncertainty and the model could also become completed applying more advanced ANNs such as recurrent neural networks.

Publisher

Emerald

Subject

Strategy and Management,General Energy

Reference35 articles.

1. Amini, F. (2013), “Iran energy balance sheet 1392 (Persian)”, Energy Ministry of Iran, Power and Energy Affairs, available: www.saba.org.ir/fa/energyinfo/tashilat/taraz (accessed 15 November 2016).

2. Energy efficiency of manufacturing processes: a critical review;Procedia CIRP,2013

3. Application of artificial neural networks using hijri lunar transaction as extracted variables to predict stock trend direction;Labu. e-Journal Muamalat Soc,2008

4. Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: a novel approach;Energy,2016

5. Australian government (2013), “Establishing and using an energy baseline”, Supply chain and logistics association of Australia – Department of Industry, available at: http://energyefficiencyopportunities.gov.au/files/2013/03/ESMG-Chapter-1.pdf

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3