Research on optimal scheduling of thermal power system in thermal power plant based on deep reinforcement learning

Author:

Wang Pan,Liu Ye

Abstract

Abstract Optimal dispatch is one of the key technologies to realize the efficient and economical operation of the thermal power system in thermal power plants. In order to reduce the energy consumption of thermal power system in thermal power plants, ensure the optimal dispatching effect and improve the efficiency of optimal dispatching, this paper introduces deep reinforcement learning to design a new optimal dispatching method for thermal power system in thermal power plants. The thermal power system structure of thermal power plant is analyzed, and the models of boiler, steam turbine and temperature and pressure reducer are established. The optimal scheduling problem of steam turbine and boiler thermal system is studied. By setting the objective function and determining the constraint function, the relevant optimal scheduling model is constructed. The SAC algorithm in deep reinforcement learning is used to solve the model to achieve the important goal of optimal scheduling. The experimental results show that the total fuel consumption of the proposed method is small, and the proposed method has a better optimal scheduling effect of thermal power system in thermal power plants, and can effectively improve the optimal scheduling efficiency.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference12 articles.

1. Optimization for circulating cooling water distribution of indirect dry cooling system in a thermal power plant under crosswind condition with evolution strategies algorithm;Li;Energies,2021

2. Discussion on calculation method of natural frequency of flue design in thermal power plant based on temperature field simulation;Liu;Journal of Engineering Mechanics and Machinery,2021

3. Methodology to evaluate contribution of thermal power plant flexibility to power system stability when increasing share of renewable energies: Classification and additional fuel cost of flexible operation;Yoshiba;Fuel,2021

4. Performability and maintenance decisions for coal ash handling system of a subcritical thermal power plant;Malik,2021

5. Optimal coordinated dispatching strategy of multi-sources power system with wind, hydro and thermal power based on cvar in typhoon environment;Qian;Energies,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3