Research on improving YOLOv5s algorithm for fabric defect detection

Author:

Zhou ShiORCID,Zhao Jia,Shi Yi ShanORCID,Wang Yi FanORCID,Mei Shun Qi

Abstract

PurposeIn the fabric manufacturing industry, various unfavorable factors, including machine fault and yarn breakage, can easily cause fabric defects and affect product quality, begetting huge economic losses to enterprises. Thus, automatic fabric defect detection systems have become an important development direction. Herein, the most common defects in the fabric production process, like ribbon yarn, broken yarn, cotton ball, holes, yarn shedding and stains, are detected. Current fabric defect detection systems afford low detection accuracy and a high missed detection rate for small target fabric defects. Therefore, this study proposes deep learning technology for automatically detecting fabric defects by improving the YOLOv5s target detection algorithm. The improved algorithm is termed YOLOv5s-4SCK, which can effectively detect fabric defects. This study aims to discuss the aforementioned issues.Design/methodology/approachSpecifically, based on the YOLOv5s algorithm, first, the structure of YOLOv5s is modified to add a small target detection layer, fully utilize deep and shallow features and reduce the missed detection rate of small target fabric defects. Second, the integration of CARAFE upsampling enables the effective retention of feature information and maintenance of a certain computational efficiency, thereby improving the detection accuracy. Finally, the K-Means++ clustering algorithm is used to analyze the position of the center point of the prior box to better obtain the anchor box and improve the average accuracy and evaluation index of detection.FindingsThe research results show that the YOLOv5s-4SCK algorithm increases the accuracy by 4.1% and the detection speed by 2 f.s-1 compared to the original YOLOv5s algorithm, and it effectively improves the original YOLOv5s problem of high missed detection rate of small targets.Research limitations/implicationsThe YOLOv5s-4SCK proposed in this paper can effectively reduce the missed detection rate of fabric defects, improve the detection efficiency and has certain industrial value.Practical implicationsThe proposed algorithm can quickly identify fabric defects, effectively improving the detection rate. In the future, the proposed algorithm will be applied in the actual industry.Social implicationsAutomatic fabric defect detection reduces the manpower of inspectors, and the proposed YOLOv5s-4SCK algorithm is also suitable for other recognition fields.Originality/valueThe proposed YOLOv5s-4SCK algorithm has been tested using real cloth to ensure its accuracy, and its performance is better than the original YOLOv5s algorithm.

Publisher

Emerald

Subject

Polymers and Plastics,General Business, Management and Accounting,Materials Science (miscellaneous),Business, Management and Accounting (miscellaneous)

Reference11 articles.

1. YOLOv3 target detection algorithm combining GIoU and Focal loss;Computer Engineering and Applications,2020

2. Application of YOLOv5 neural network based on improved attention mechanism in recognition of thangka image defects;KSII Transactions on Internet and Information Systems (TIIS),2022

3. Computer-vision-based fabric defect detection: a survey;IEEE Transactions on Industrial Electronics,2008

4. Integrating deformable convolution and pyramid network in cascade R-CNN for fabric defect detection,2020

5. A fabric defect detection method based on deep learning;IEEE Access,2022

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3