FSNB-YOLOV8: Improvement of Object Detection Model for Surface Defects Inspection in Online Industrial Systems

Author:

Li Jun1,Wu Jinglei2,Shao Yanhua3

Affiliation:

1. School of Computer Science, Beijing Information Science and Technology University, Beijing 100192, China

2. National Institute of Biological Sciences, Beijing 102206, China

3. National Computer System Engineering Research Institute of China, Beijing 100083, China

Abstract

The current object detection algorithm based on CNN makes it difficult to effectively capture the characteristics of subtle defects in online industrial product packaging bags. These defects are often visually similar to the texture or background of normal product packaging bags, and the model cannot effectively distinguish them. In order to deal with these challenges, this paper optimizes and improves the network structure based on YOLOv8 to achieve accurate identification of defects. First, in order to solve the long-tail distribution problem of data, a fuzzy search data enhancement algorithm is introduced to effectively increase the number of samples. Secondly, a joint network of FasterNet and SPD-Conv is proposed to replace the original backbone network of YOLOv8, which effectively reduces the computing load and improves the accuracy of defect identification. In addition, in order to further improve the performance of multiscale feature fusion, a weighted bidirectional feature pyramid network (BiFPN) is introduced, which effectively enhances the model’s ability to detect defects at different scales through the fusion of deep information and shallow information. Finally, in order to reduce the sensitivity of the defect position deviation, the NWD loss function is used to optimize the positioning performance of the model better and reduce detection errors caused by position errors. Experimental results show that the FSNB_YOLOv8 model proposed in this paper can reach 98.8% mAP50 accuracy. This success not only verifies the effectiveness of the optimization and improvement of this article’s model but also provides an efficient and accurate solution for surface defect detection of industrial product packaging bags on artificial assembly systems.

Funder

Basic Research Project of the Translational Application Project of the “Wise Eyes Action”

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3