Design of a novel robotic system for minimally invasive surgery

Author:

Ai Yue,Pan Bo,Fu Yili,Wang Shuguo

Abstract

Purpose Robot-assisted system for minimally invasive surgery (MIS) has been attracting more and more attentions. Compared with a traditional MIS, the robot-assisted system for MIS is able to overcome or reduce defects, such as poor hand-eye coordination, heavy labour intensity and limited motion of the instrument. The purpose of this paper is to design a novel robotic system for MIS applications. Design/methodology/approach A robotic system with three separate slave arms for MIS has been designed. In the proposed robot, a new mechanism was designed as the remote centre motion (RCM) mechanism to restrain the movement of instrument or laparoscope around the incision. Moreover, an improved instrument without coupling motion between wrist and grippers was developed to enhance its manipulability. A control system architecture was also developed, and an intuitive control method was applied to realize hand-eye coordination of the operator. Findings For the RCM mechanism, the workspace was analyzed and the positioning accuracy of the remote centre point was tested. The results show that the RCM mechanism can be applied to MIS. Furthermore, the master-slave trajectory tracking experiments reveal that slave robots are able to follow the movement of the master manipulators well. Finally, the feasibility of the robot-assisted system for MIS is proved by performing animal experiments successfully. Originality/value This paper offers a novel robotic system for MIS. It can accomplish the anticipated results.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference25 articles.

1. Task control with remote center of motion constraint for minimally invasive robotic surgery,2013

2. Transforming a surgical robot for human telesurgery;IEEE Transactions on Robotics and Automation,2003

3. State of the art in robots used in minimally invasive surgeries. Natural orifice transluminal surgery (notes) as a particular case;Industrial Robot: An International Journal,2015

4. A telerobotic system for remote surgical collaboration with communication delays,2002

5. The DLR MIRO: a versatile lightweight robot for surgical applications;Industrial Robot: An International Journal,2008

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3