Study on oil-cooler location for a pusher type turbo prop aircraft using numerical simulation

Author:

P.S. Premkumar,S. Nadaraja Pillai,C. Senthil Kumar

Abstract

Purpose Pusher configured turbo-prop aircraft receive inadequate ram air cooling due to the lack of propeller slipstream, particularly during ground operations. However, flow entrainment can be exploited to a greater extent by placing the oil-cooler duct close to downstream of the propeller at a suitable radial location. But this method has a detrimental effect on the propeller thrust. The purpose of this paper is to discuss the results of numerical simulations carried out to simulate the performance of the propeller with and without oil cooler. Design/methodology/approach In this paper, three-dimensional (3D) numerical simulations are carried out to simulate the propeller in a rotating domain using an unstructured grid. A computational fluid dynamics solver is put forward to analyze the effect of thrust loss by solving 3D Navier-Stokes equations using a second-order upwind finite-volume scheme. In this study, the impact of thrust loss incurred in the propeller flow field with and without oil cooler duct for three different locations at various rotational speeds is carried out to assess the propeller performance and to identify the optimum position to get a sufficient mass flow rate. Findings The findings from this study are simulated thrust values of an uninstalled five-bladed propeller of light transport aircraft (LTA) match well with original equipment manufacturer propeller thrust data. The tip speed velocities simulated for different operating conditions are in good agreement with the theoretical calculations. The influence of oil-cooler effect on the propeller flow field is less in low velocity to high-velocity operating condition due to flow transition from laminar to turbulent. The presence of the oil cooler, which influences the thrust loss, is studied at propeller upstream and downstream locations in detail for 30%, 40% and 50% of propeller radius cases. Research limitations/implications Simulations with finer and structured hexa grids can be applied to this problem to get closer results and save solver time as future work. Practical implications The recommended system is installed in the production standard aircraft of LTA. After installation oil cooler performance is better compared to the previous arrangement. Originality/value Research work about pusher aircraft is very limited. The problem addressed in this study is unique which resolves the major issue of pusher aircraft. This work highlights the difficulty involved in LTA engine oil cooling, and solution methodologies are also provided. Numerical simulation with oil-cooler assembly is a new area of research that gave the solution for this oil-cooling issue through various oil-cooler case studies.

Publisher

Emerald

Subject

Aerospace Engineering

Reference16 articles.

1. Analysis of heat transfer and pressure drop characteristics in an offset strip fin heat exchanger;International Communications in Heat and Mass Transfer,2009

2. An innovative approach for the numerical simulation of oil cooling systems;Carozza;Advances in Aircraft and Spacecraft Science,2015

3. Performance improvement of flush, parallel walled auxiliary intakes by means of vortex generators,2004

4. Validation of an unstructured grid Euler/Navier stokes code on a full aircraft with propellers,2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3