Author:
Min Kang,Ni Fenglei,Liu Hong
Abstract
Purpose
The purpose of the paper is to propose an efficient and accurate force/torque (F/T) sensing method for the robotic wrist-mounted six-dimensional F/T sensor based on an excitation trajectory.
Design/methodology/approach
This paper presents an efficient and accurate F/T sensing method based on an excitation trajectory. First, the dynamic identification model is established by comprehensively considering inertial forces/torques, sensor zero-drift values, robot base inclination errors and forces/torques caused by load gravity. Therefore, the sensing accuracy is improved. Then, the excitation trajectory with optimized poses is used for robot following and data acquisition. The data acquisition is not limited by poses and its time can be significantly shortened. Finally, the least squares method is used to identify parameters and sense contact forces/torques.
Findings
Experiments have been carried out on the self-developed robot manipulator. The results strongly demonstrate that the proposed approach is more efficient and accurate than the existing widely-adopted method. Furthermore, the data acquisition time can be shortened from more than 60 s to 3 s/20 s. Thus, the proposed approach is effective and suitable for fast-paced industrial applications.
Originality/value
The main contributions of this paper are as follows: the dynamic identification model is established by comprehensively considering inertial forces/torques, sensor zero-drift values, robot base inclination errors and forces/torques caused by load gravity; and the excitation trajectory with optimized poses is used for robot following and data acquisition.
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering
Reference21 articles.
1. Force estimation-based compliance control of harmonically driven manipulators,2007
2. Dynamic contact force/torque observer: sensor fusion for improved interaction control;International Journal of Robotics Research,2013
3. Collision detection and safe reaction with the DLR-III lightweight manipulator arm,2006
4. Compensation of load dynamics for admittance controlled interactive industrial robots using a quaternion-based Kalman filter;IEEE Robotics and Automation Letters,2017
5. Generalized contact force estimator for a robot manipulator,2006
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献