Performance enhancement of two-camera robotic system using adaptive gain approach

Author:

Krishnan Megha G.,Vijayan Abhilash T.,Sankar Ashok

Abstract

Purpose This paper aims to improve the performance of a two-camera robotic feedback system designed for automatic pick and place application by modifying its velocity profile during switching of control. Design/methodology/approach Cooperation of global and local vision sensors ensures visibility of the target for a two-camera robotic system. The master camera, monitoring the workspace, guides the robot such that image-based visual servoing (IBVS) by the eye-in-hand camera transcends its inherent shortcomings. A hybrid control law steers the robot until the system switches to IBVS in a region proven for its asymptotic stability and convergence through a qualitative overview of the scheme. Complementary gain factors can ensure a smooth transition in velocity during switching considering the versatility and range of the workspace. Findings The proposed strategy is verified through simulation studies and implemented on a 6-DOF industrial robot ABB IRB 1200 to validate the practicality of adaptive gain approach while switching in a hybrid visual feedback system. This approach can be extended to any control problem with uneven switching surfaces or coarse/fine controllers which are subjected to discrete time events. Practical implications In complex workspace where robots operate in parallel with other robots/humans and share workspaces, the supervisory control scheme ensures convergence. This study proves that hybrid control laws are more effective than conventional approaches in unstructured environments and visibility constraints can be overcome by the integration of multiple vision sensors. Originality/value The supervisory control is designed to combine the visual feedback data from eye-in-hand and eye-to-hand sensors. A gain adaptive approach smoothens the velocity characteristics of the end-effector while switching the control from master camera to the end-effector camera.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference30 articles.

1. ABB (2018), “Product specifications IRB 1200”, Document ID: 3HAC046982-001, available at: https://library.e.abb.com/public/683ae78194674b809d0362308ebcd5f3/3HAC046982%20PS%20IRB%201200-en.pdf (accessed 10 March 2019).

2. Switching controller for efficient IBVS,2012

3. A new hybrid approach for the visual servoing of VTOL UAVs from unknown geometries,2014

4. Hybrid predictive control for constrained visual servoing,2014

5. Potential problems of stability and convergence in image-based and position-based visual servoing,1998

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3