A visual servo reinforcement learning control of uncalibrated manipulators with multi-channel gain decision

Author:

Wang Bingsen1,Dong Jiuxiang1ORCID

Affiliation:

1. School of Information Science and Engineering, Northeastern University, China

Abstract

A technology based on Kalman filtering method combined with multi-channel gain training reinforcement learning for uncalibrated camera visual servo tasks is proposed in this paper. First, a dynamic system with state variables formed from the elements of the image Jacobian matrix is constructed to describe the mapping relationship between two-dimensional images and three-dimensional poses. Kalman filter is used to estimate the state variables of the constructed system online. Next, the Jacobian matrix estimation and depth determination strategy gradient (DDPG) methods are combined to jointly train multi-channel gains by setting a reasonable segmented reward and punishment mechanism. Through training, a more effective gain decision can be obtained. The robustness of Kalman filtering to interference to a certain extent reduces the precise dependence of reinforcement learning models, thereby achieving higher robustness in intelligent visual servo control. Finally, the effectiveness and advantages of the Kalman-DDPG method have been demonstrated through simulation comparison and six-degree-of-freedom (DOF) uncalibrated manipulator physical experiments.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3